IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0038799.html
   My bibliography  Save this article

A Probabilistic Fragment-Based Protein Structure Prediction Algorithm

Author

Listed:
  • David Simoncini
  • Francois Berenger
  • Rojan Shrestha
  • Kam Y J Zhang

Abstract

Conformational sampling is one of the bottlenecks in fragment-based protein structure prediction approaches. They generally start with a coarse-grained optimization where mainchain atoms and centroids of side chains are considered, followed by a fine-grained optimization with an all-atom representation of proteins. It is during this coarse-grained phase that fragment-based methods sample intensely the conformational space. If the native-like region is sampled more, the accuracy of the final all-atom predictions may be improved accordingly. In this work we present EdaFold, a new method for fragment-based protein structure prediction based on an Estimation of Distribution Algorithm. Fragment-based approaches build protein models by assembling short fragments from known protein structures. Whereas the probability mass functions over the fragment libraries are uniform in the usual case, we propose an algorithm that learns from previously generated decoys and steers the search toward native-like regions. A comparison with Rosetta AbInitio protocol shows that EdaFold is able to generate models with lower energies and to enhance the percentage of near-native coarse-grained decoys on a benchmark of proteins. The best coarse-grained models produced by both methods were refined into all-atom models and used in molecular replacement. All atom decoys produced out of EdaFold’s decoy set reach high enough accuracy to solve the crystallographic phase problem by molecular replacement for some test proteins. EdaFold showed a higher success rate in molecular replacement when compared to Rosetta. Our study suggests that improving low resolution coarse-grained decoys allows computational methods to avoid subsequent sampling issues during all-atom refinement and to produce better all-atom models. EdaFold can be downloaded from http://www.riken.jp/zhangiru/software/.

Suggested Citation

  • David Simoncini & Francois Berenger & Rojan Shrestha & Kam Y J Zhang, 2012. "A Probabilistic Fragment-Based Protein Structure Prediction Algorithm," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-11, July.
  • Handle: RePEc:plo:pone00:0038799
    DOI: 10.1371/journal.pone.0038799
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038799
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0038799&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0038799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Hamelryck & John T Kent & Anders Krogh, 2006. "Sampling Realistic Protein Conformations Using Local Structural Bias," PLOS Computational Biology, Public Library of Science, vol. 2(9), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Simoncini & Kam Y J Zhang, 2013. "Efficient Sampling in Fragment-Based Protein Structure Prediction Using an Estimation of Distribution Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bee, Marco & Benedetti, Roberto & Espa, Giuseppe, 2017. "Approximate maximum likelihood estimation of the Bingham distribution," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 84-96.
    2. Fernández-Durán Juan José & Gregorio-Domínguez MarÍa Mercedes, 2014. "Modeling angles in proteins and circular genomes using multivariate angular distributions based on multiple nonnegative trigonometric sums," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 1-18, February.
    3. Jes Frellsen & Ida Moltke & Martin Thiim & Kanti V Mardia & Jesper Ferkinghoff-Borg & Thomas Hamelryck, 2009. "A Probabilistic Model of RNA Conformational Space," PLOS Computational Biology, Public Library of Science, vol. 5(6), pages 1-11, June.
    4. Marc Hallin & H Lui & Thomas Verdebout, 2022. "Nonparametric Measure-transportation-based Methods for Directional Data," Working Papers ECARES 2022-18, ULB -- Universite Libre de Bruxelles.
    5. David Simoncini & Kam Y J Zhang, 2013. "Efficient Sampling in Fragment-Based Protein Structure Prediction Using an Estimation of Distribution Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    6. Marco Bee & Roberto Benedetti & Giuseppe Espa, 2015. "Approximate likelihood inference for the Bingham distribution," DEM Working Papers 2015/02, Department of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0038799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.