IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0018934.html
   My bibliography  Save this article

Rosetta FlexPepDock ab-initio: Simultaneous Folding, Docking and Refinement of Peptides onto Their Receptors

Author

Listed:
  • Barak Raveh
  • Nir London
  • Lior Zimmerman
  • Ora Schueler-Furman

Abstract

Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions.

Suggested Citation

  • Barak Raveh & Nir London & Lior Zimmerman & Ora Schueler-Furman, 2011. "Rosetta FlexPepDock ab-initio: Simultaneous Folding, Docking and Refinement of Peptides onto Their Receptors," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-10, April.
  • Handle: RePEc:plo:pone00:0018934
    DOI: 10.1371/journal.pone.0018934
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018934
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0018934&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0018934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evangelia Petsalaki & Alexander Stark & Eduardo GarcĂ­a-Urdiales & Robert B Russell, 2009. "Accurate Prediction of Peptide Binding Sites on Protein Surfaces," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
    2. Iskra Staneva & Yongqi Huang & Zhirong Liu & Stefan Wallin, 2012. "Binding of Two Intrinsically Disordered Peptides to a Multi-Specific Protein: A Combined Monte Carlo and Molecular Dynamics Study," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-9, September.
    3. Iskra Staneva & Stefan Wallin, 2011. "Binding Free Energy Landscape of Domain-Peptide Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-9, August.
    4. Arnab Bhattacherjee & Stefan Wallin, 2013. "Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.
    5. Mahdi Sarmady & William Dampier & Aydin Tozeren, 2011. "Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0018934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.