IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0011843.html
   My bibliography  Save this article

MatureBayes: A Probabilistic Algorithm for Identifying the Mature miRNA within Novel Precursors

Author

Listed:
  • Katerina Gkirtzou
  • Ioannis Tsamardinos
  • Panagiotis Tsakalides
  • Panayiota Poirazi

Abstract

Background: MicroRNAs (miRNAs) are small, single stranded RNAs with a key role in post-transcriptional regulation of thousands of genes across numerous species. While several computational methods are currently available for identifying miRNA genes, accurate prediction of the mature miRNA remains a challenge. Existing approaches fall short in predicting the location of mature miRNAs but also in finding the functional strand(s) of miRNA precursors. Methodology/Principal Findings: Here, we present a computational tool that incorporates a Naive Bayes classifier to identify mature miRNA candidates based on sequence and secondary structure information of their miRNA precursors. We take into account both positive (true mature miRNAs) and negative (same-size non-mature miRNA sequences) examples to optimize sensitivity as well as specificity. Our method can accurately predict the start position of experimentally verified mature miRNAs for both human and mouse, achieving a significantly larger (often double) performance accuracy compared with two existing methods. Moreover, the method exhibits a very high generalization performance on miRNAs from two other organisms. More importantly, our method provides direct evidence about the features of miRNA precursors which may determine the location of the mature miRNA. We find that the triplet of positions 7, 8 and 9 from the mature miRNA end towards the closest hairpin have the largest discriminatory power, are relatively conserved in terms of sequence composition (mostly contain a Uracil) and are located within or in very close proximity to the hairpin loop, suggesting the existence of a possible recognition site for Dicer and associated proteins. Conclusions: This work describes a novel algorithm for identifying the start position of mature miRNA(s) produced by miRNA precursors. Our tool has significantly better (often double) performance than two existing approaches and provides new insights about the potential use of specific sequence/structural information as recognition signals for Dicer processing. Web Tool available at: http://mirna.imbb.forth.gr/MatureBayes.html

Suggested Citation

  • Katerina Gkirtzou & Ioannis Tsamardinos & Panagiotis Tsakalides & Panayiota Poirazi, 2010. "MatureBayes: A Probabilistic Algorithm for Identifying the Mature miRNA within Novel Precursors," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-14, August.
  • Handle: RePEc:plo:pone00:0011843
    DOI: 10.1371/journal.pone.0011843
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011843
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0011843&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0011843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emily Bernstein & Amy A. Caudy & Scott M. Hammond & Gregory J. Hannon, 2001. "Role for a bidentate ribonuclease in the initiation step of RNA interference," Nature, Nature, vol. 409(6818), pages 363-366, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bidur Paudel & Si-Yeon Jeong & Carolina Pena Martinez & Alexis Rickman & Ashley Haluck-Kangas & Elizabeth T. Bartom & Kristina Fredriksen & Amira Affaneh & John A. Kessler & Joseph R. Mazzulli & Andre, 2024. "Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer’s disease and aging," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Trung Duc Nguyen & Tam Anh Trinh & Sheng Bao & Tuan Anh Nguyen, 2022. "Secondary structure RNA elements control the cleavage activity of DICER," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Felix K. F. Kommoss & Anne-Sophie Chong & Anne-Laure Chong & Elke Pfaff & David T. W. Jones & Laura S. Hiemcke-Jiwa & Lennart A. Kester & Uta Flucke & Manfred Gessler & Daniel Schrimpf & Felix Sahm & , 2023. "Genomic characterization of DICER1-associated neoplasms uncovers molecular classes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Bin Liu & Longyun Fang & Fule Liu & Xiaolong Wang & Junjie Chen & Kuo-Chen Chou, 2015. "Identification of Real MicroRNA Precursors with a Pseudo Structure Status Composition Approach," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.
    5. Justine M Pompey & Bardees Foda & Upinder Singh, 2015. "A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0011843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.