IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0009272.html
   My bibliography  Save this article

Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

Author

Listed:
  • Hao Zhang
  • Peng Wang
  • Nikitas Papangelopoulos
  • Ying Xu
  • Alessandro Sette
  • Philip E Bourne
  • Ole Lund
  • Julia Ponomarenko
  • Morten Nielsen
  • Bjoern Peters

Abstract

Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results.

Suggested Citation

  • Hao Zhang & Peng Wang & Nikitas Papangelopoulos & Ying Xu & Alessandro Sette & Philip E Bourne & Ole Lund & Julia Ponomarenko & Morten Nielsen & Bjoern Peters, 2010. "Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-10, February.
  • Handle: RePEc:plo:pone00:0009272
    DOI: 10.1371/journal.pone.0009272
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009272
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0009272&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0009272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Morten Nielsen & Claus Lundegaard & Thomas Blicher & Bjoern Peters & Alessandro Sette & Sune Justesen & Søren Buus & Ole Lund, 2008. "Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-10, July.
    2. Peter D. Kwong & Richard Wyatt & James Robinson & Raymond W. Sweet & Joseph Sodroski & Wayne A. Hendrickson, 1998. "Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody," Nature, Nature, vol. 393(6686), pages 648-659, June.
    3. Peng Wang & John Sidney & Courtney Dow & Bianca Mothé & Alessandro Sette & Bjoern Peters, 2008. "A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.
    4. Bjoern Peters & Huynh-Hoa Bui & Sune Frankild & Morten Nielsen & Claus Lundegaard & Emrah Kostem & Derek Basch & Kasper Lamberth & Mikkel Harndahl & Ward Fleri & Stephen S Wilson & John Sidney & Ole L, 2006. "A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules," PLOS Computational Biology, Public Library of Science, vol. 2(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew J Bordner, 2010. "Towards Universal Structure-Based Prediction of Class II MHC Epitopes for Diverse Allotypes," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gouri Shankar Pandey & Chen Yanover & Tom E Howard & Zuben E Sauna, 2013. "Polymorphisms in the F8 Gene and MHC-II Variants as Risk Factors for the Development of Inhibitory Anti-Factor VIII Antibodies during the Treatment of Hemophilia A: A Computational Assessment," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-11, May.
    2. Lingli Kong & Jianfang Liu & Meng Zhang & Zhuoyang Lu & Han Xue & Amy Ren & Jiankang Liu & Jinping Li & Wai Li Ling & Gang Ren, 2023. "Facile hermetic TEM grid preparation for molecular imaging of hydrated biological samples at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yanay Ofran & Burkhard Rost, 2007. "Protein–Protein Interaction Hotspots Carved into Sequences," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-8, July.
    4. Peng Wang & John Sidney & Courtney Dow & Bianca Mothé & Alessandro Sette & Bjoern Peters, 2008. "A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.
    5. repec:arp:sjmhsm:2020:p:71-76 is not listed on IDEAS
    6. Zhi Yang & Kim-Marie A. Dam & Michael D. Bridges & Magnus A. G. Hoffmann & Andrew T. DeLaitsch & Harry B. Gristick & Amelia Escolano & Rajeev Gautam & Malcolm A. Martin & Michel C. Nussenzweig & Wayne, 2022. "Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Ignacio Fernández & Lasse Toftdal Dynesen & Youna Coquin & Riccardo Pederzoli & Delphine Brun & Ahmed Haouz & Antoine Gessain & Félix A. Rey & Florence Buseyne & Marija Backovic, 2023. "The crystal structure of a simian Foamy Virus receptor binding domain provides clues about entry into host cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Nicolas Rapin & Ole Lund & Massimo Bernaschi & Filippo Castiglione, 2010. "Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-14, April.
    9. Jérémie Prévost & Yaozong Chen & Fei Zhou & William D. Tolbert & Romain Gasser & Halima Medjahed & Manon Nayrac & Dung N. Nguyen & Suneetha Gottumukkala & Ann J. Hessell & Venigalla B. Rao & Edwin Poz, 2023. "Structure-function analyses reveal key molecular determinants of HIV-1 CRF01_AE resistance to the entry inhibitor temsavir," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Jun Niu & Qi Wang & Wenwen Zhao & Bing Meng & Youwei Xu & Xianfang Zhang & Yi Feng & Qilian Qi & Yanling Hao & Xuan Zhang & Ying Liu & Jiangchao Xiang & Yiming Shao & Bei Yang, 2023. "Structures and immune recognition of Env trimers from two Asia prevalent HIV-1 CRFs," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Andrew J Bordner, 2010. "Towards Universal Structure-Based Prediction of Class II MHC Epitopes for Diverse Allotypes," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-12, December.
    12. Carsten Magnus & Roland R Regoes, 2010. "Estimating the Stoichiometry of HIV Neutralization," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    13. Morten Nielsen & Claus Lundegaard & Thomas Blicher & Bjoern Peters & Alessandro Sette & Sune Justesen & Søren Buus & Ole Lund, 2008. "Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-10, July.
    14. Regina S Salvat & Andrew S Parker & Yoonjoo Choi & Chris Bailey-Kellogg & Karl E Griswold, 2015. "Mapping the Pareto Optimal Design Space for a Functionally Deimmunized Biotherapeutic Candidate," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-15, January.
    15. Sinu Paul & Nathan P Croft & Anthony W Purcell & David C Tscharke & Alessandro Sette & Morten Nielsen & Bjoern Peters, 2020. "Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-18, May.
    16. Massimo Andreatta & Claus Schafer-Nielsen & Ole Lund & Søren Buus & Morten Nielsen, 2011. "NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-11, November.
    17. Aliana López de Victoria & Phanourios Tamamis & Chris A Kieslich & Dimitrios Morikis, 2012. "Insights into the Structure, Correlated Motions, and Electrostatic Properties of Two HIV-1 gp120 V3 Loops," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-15, November.
    18. Yang Yang & DeGruttola Victor, 2012. "Resampling-based Methods in Single and Multiple Testing for Equality of Covariance/Correlation Matrices," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
    19. Tomer Hertz & Hasan Ahmed & David P Friedrich & Danilo R Casimiro & Steven G Self & Lawrence Corey & M Juliana McElrath & Susan Buchbinder & Helen Horton & Nicole Frahm & Michael N Robertson & Barney , 2013. "HIV-1 Vaccine-Induced T-Cell Reponses Cluster in Epitope Hotspots that Differ from Those Induced in Natural Infection with HIV-1," PLOS Pathogens, Public Library of Science, vol. 9(6), pages 1-14, June.
    20. Kyle Saylor & Ben Donnan & Chenming Zhang, 2022. "Computational mining of MHC class II epitopes for the development of universal immunogenic proteins," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-17, March.
    21. Satyavani Kaliamurthi & Gurudeeban Selvaraj & Sathishkumar Chinnasamy & Qiankun Wang & Asma Sindhoo Nangraj & William C. Cho & Keren Gu & Dong-Qing Wei, 2019. "Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma," Data, MDPI, vol. 4(1), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0009272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.