IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0006431.html
   My bibliography  Save this article

Long-Range Correlations in Rectal Temperature Fluctuations of Healthy Infants during Maturation

Author

Listed:
  • Georgette Stern
  • Julia Beel
  • Béla Suki
  • Mike Silverman
  • Jenny Westaway
  • Mateja Cernelc
  • David Baldwin
  • Urs Frey

Abstract

Background: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (Trec) patterns in maturing infants. Methodology/Principal Findings: We measured Trec fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, α using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that Trec fluctuations exhibit fractal long-range correlations with a mean (SD) α of 1.51 (0.11), indicating that Trec is regulated in a highly correlated and hence deterministic manner. A significant increase in α with age from 1.42 (0.07) at 4 weeks to 1.58 (0.04) at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. α was not associated with mean room temperature or influenced by immunization Conclusions: This study shows that the quantification of long-range correlations using α derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time Trec pattern in young infants, reflective of maturation of the autonomic system. Detrended fluctuation analysis may prove useful for characterizing thermoregulation in premature and other infants at risk for life-threatening events.

Suggested Citation

  • Georgette Stern & Julia Beel & Béla Suki & Mike Silverman & Jenny Westaway & Mateja Cernelc & David Baldwin & Urs Frey, 2009. "Long-Range Correlations in Rectal Temperature Fluctuations of Healthy Infants during Maturation," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-9, July.
  • Handle: RePEc:plo:pone00:0006431
    DOI: 10.1371/journal.pone.0006431
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006431
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006431&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0006431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Urs Frey & Tanja Brodbeck & Arnab Majumdar & D. Robin Taylor & G. Ian Town & Michael Silverman & Béla Suki, 2005. "Risk of severe asthma episodes predicted from fluctuation analysis of airway function," Nature, Nature, vol. 438(7068), pages 667-670, December.
    2. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerstin Jost & Isabelle Pramana & Edgar Delgado-Eckert & Nitin Kumar & Alexandre N Datta & Urs Frey & Sven M Schulzke, 2017. "Dynamics and complexity of body temperature in preterm infants nursed in incubators," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    2. Zhang, Yin & Li, Jin & Wang, Jun, 2017. "Exploring stability of entropy analysis for signal with different trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 60-67.
    3. Rodriguez, Eduardo & Echeverria, Juan C. & Alvarez-Ramirez, Jose, 2009. "Fractality in electrocardiographic waveforms for healthy subjects and patients with ventricular fibrillation," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1046-1054.
    4. Rodriguez, Eduardo & Echeverria, Juan C. & Alvarez-Ramirez, Jose, 2007. "Detrended fluctuation analysis of heart intrabeat dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 429-438.
    5. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    6. Mirzayof, Dror & Ashkenazy, Yosef, 2010. "Preservation of long range temporal correlations under extreme random dilution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5573-5580.
    7. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    8. Chung‐Min Liao & Nan‐Hung Hsieh & Chia‐Pin Chio & Szu‐Chieh Chen, 2010. "Assessing the Exacerbations Risk of Influenza‐Associated Chronic Occupational Asthma," Risk Analysis, John Wiley & Sons, vol. 30(7), pages 1062-1075, July.
    9. Kaufman, Miron & Zurcher, Ulrich & Sung, Paul S., 2007. "Entropy of electromyography time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 698-707.
    10. Wang, Jian & Jiang, Wenjing & Wu, Xinpei & Yang, Mengdie & Shao, Wei, 2023. "Role of vaccine in fighting the variants of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Ana Gavrovska & Goran Zajić & Vesna Bogdanović & Irini Reljin & Branimir Reljin, 2017. "Identification of S1 and S2 Heart Sound Patterns Based on Fractal Theory and Shape Context," Complexity, Hindawi, vol. 2017, pages 1-9, November.
    12. Ausloos, Marcel & Nedic, Olgica & Dekanski, Aleksandar, 2016. "Day of the week effect in paper submission/acceptance/rejection to/in/by peer review journals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 197-203.
    13. repec:plo:pone00:0065090 is not listed on IDEAS
    14. Stanley, H.E. & Amaral, L.A.N. & Goldberger, A.L. & Havlin, S. & Ivanov, P.Ch. & Peng, C.-K., 1999. "Statistical physics and physiology: Monofractal and multifractal approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 309-324.
    15. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    16. Kavasseri, Rajesh G. & Nagarajan, Radhakrishnan, 2005. "A multifractal description of wind speed records," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 165-173.
    17. Núñez-Acosta, Elisa & Lerma, Claudia & Márquez, Manlio F. & José, Marco V., 2012. "Mutual information analysis reveals bigeminy patterns in Andersen–Tawil syndrome and in subjects with a history of sudden cardiac death," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 693-707.
    18. França, Lucas Gabriel Souza & Montoya, Pedro & Miranda, José Garcia Vivas, 2019. "On multifractals: A non-linear study of actigraphy data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 612-619.
    19. Vitanov, Nikolay K. & Hoffmann, Norbert P. & Wernitz, Boris, 2014. "Nonlinear time series analysis of vibration data from a friction brake: SSA, PCA, and MFDFA," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 90-99.
    20. Li, Yu & Wang, Jun & Li, Jin & Liu, Dazhao, 2015. "Effect of extreme data loss on heart rate signals quantified by entropy analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 651-658.
    21. Nigel R Franks & Alan Worley & George T Fortune & Raymond E Goldstein & Ana B Sendova-Franks, 2024. "Seeking safety: Movement dynamics after post-contact immobility," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-27, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0006431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.