IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1013484.html
   My bibliography  Save this article

Dynamical mean-field theory for a highly heterogeneous neural population with graded persistent activity of the entorhinal cortex

Author

Listed:
  • Futa Tomita
  • Jun-nosuke Teramae

Abstract

The entorhinal cortex serves as a major gateway connecting the hippocampus and neocortex, playing a pivotal role in episodic memory formation. Neurons in the entorhinal cortex exhibit two notable features associated with temporal information processing: a population-level ability to encode long temporal signals and a single-cell characteristic known as graded-persistent activity, where some neurons maintain activity for extended periods even without external inputs. However, the relationship between these single-cell characteristics and population dynamics has remained unclear, largely due to the absence of a framework to describe the dynamics of neural populations with highly heterogeneous time scales. To address this gap, we extend the dynamical mean field theory, a powerful framework for analyzing large-scale population dynamics, to study the dynamics of heterogeneous neural populations. By proposing an analytically tractable model of graded-persistent activity, we demonstrate that the introduction of graded-persistent neurons shifts the chaos-order phase transition point and expands the network’s dynamical region, a preferable region for temporal information computation. Furthermore, we validate our framework by applying it to a system with heterogeneous adaptation, demonstrating that such heterogeneity can reduce the dynamical regime, contrary to previous simplified approximations. These findings establish a theoretical foundation for understanding the functional advantages of diversity in biological systems and offer insights applicable to a wide range of heterogeneous networks beyond neural populations.Author summary: Neurons in the brain exhibit a high degree of diversity in their intrinsic properties, including their characteristic time scales. However, little is known about how this diversity influences population dynamics. This study explores how a specific type of neuron in the entorhinal cortex, which can maintain firing activity for several minutes, even without external input, affects population dynamics. We develop a theory to describe large-scale recurrent networks of heterogeneous neurons and reveal that the introduction of these neurons shifts the network toward a more dynamic regime, which is preferable for temporal information processing. Our theory was also applied to other heterogeneous populations, offering new perspectives on the significance of diversity in neural population dynamics.

Suggested Citation

  • Futa Tomita & Jun-nosuke Teramae, 2025. "Dynamical mean-field theory for a highly heterogeneous neural population with graded persistent activity of the entorhinal cortex," PLOS Computational Biology, Public Library of Science, vol. 21(9), pages 1-30, September.
  • Handle: RePEc:plo:pcbi00:1013484
    DOI: 10.1371/journal.pcbi.1013484
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1013484
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1013484&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1013484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Tsao & Jørgen Sugar & Li Lu & Cheng Wang & James J. Knierim & May-Britt Moser & Edvard I. Moser, 2018. "Integrating time from experience in the lateral entorhinal cortex," Nature, Nature, vol. 561(7721), pages 57-62, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babak Shahbaba & Lingge Li & Forest Agostinelli & Mansi Saraf & Keiland W. Cooper & Derenik Haghverdian & Gabriel A. Elias & Pierre Baldi & Norbert J. Fortin, 2022. "Hippocampal ensembles represent sequential relationships among an extended sequence of nonspatial events," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Jingyi Wang & Arielle Tambini & Laura Pritschet & Caitlin M. Taylor & Emily G. Jacobs & Regina C. Lapate, 2025. "The intrinsic time tracker: temporal context is embedded in entorhinal and hippocampal functional connectivity patterns," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Xiaxia Xu & Lingzhen Song & Rebecca Kringel & Ileana L. Hanganu-Opatz, 2021. "Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    5. Krishna Choudhary & Sven Berberich & Thomas T. G. Hahn & James M. McFarland & Mayank R. Mehta, 2024. "Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Charles P Davis & Eiling Yee, 2023. "Is time an embodied property of concepts?," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-17, September.
    7. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Jacob L. S. Bellmund & Lorena Deuker & Nicole D. Montijn & Christian F. Doeller, 2022. "Mnemonic construction and representation of temporal structure in the hippocampal formation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Cheng Wang & Heekyung Lee & Geeta Rao & James J. Knierim, 2024. "Multiplexing of temporal and spatial information in the lateral entorhinal cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Futing Zou & Guo Wanjia & Emily J. Allen & Yihan Wu & Ian Charest & Thomas Naselaris & Kendrick Kay & Brice A. Kuhl & J. Benjamin Hutchinson & Sarah DuBrow, 2023. "Re-expression of CA1 and entorhinal activity patterns preserves temporal context memory at long timescales," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Eleanor Spens & Neil Burgess, 2024. "A generative model of memory construction and consolidation," Nature Human Behaviour, Nature, vol. 8(3), pages 526-543, March.
    12. Noé Hamou & Samuel J. Gershman & Gautam Reddy, 2025. "Reconciling time and prediction error theories of associative learning," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1013484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.