IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012681.html
   My bibliography  Save this article

Deciphering the interplay between biology and physics with a finite element method-implemented vertex organoid model: A tool for the mechanical analysis of cell behavior on a spherical organoid shell

Author

Listed:
  • Julien Laussu
  • Deborah Michel
  • Léa Magne
  • Stephane Segonds
  • Steven Marguet
  • Dimitri Hamel
  • Muriel Quaranta-Nicaise
  • Frederick Barreau
  • Emmanuel Mas
  • Vincent Velay
  • Florian Bugarin
  • Audrey Ferrand

Abstract

Understanding the interplay between biology and mechanics in tissue architecture is challenging, particularly in terms of 3D tissue organization. Addressing this challenge requires a biological model enabling observations at multiple levels from cell to tissue, as well as theoretical and computational approaches enabling the generation of a synthetic model that is relevant to the biological model and allowing for investigation of the mechanical stresses experienced by the tissue. Using a monolayer human colon epithelium organoid as a biological model, freely available tools (Fiji, Cellpose, Napari, Morphonet, or Tyssue library), and the commercially available Abaqus FEM solver, we combined vertex and FEM approaches to generate a comprehensive viscoelastic finite element model of the human colon organoid and demonstrated its flexibility. We imaged human colon organoid development for 120 hours, following the evolution of the organoids from an immature to a mature morphology. According to the extracted architectural/geometric parameters of human colon organoids at various stages of tissue architecture establishment, we generated organoid active vertex models. However, this approach did not consider the mechanical aspects involved in the organoids’ morphological evolution. Therefore, we applied a finite element method considering mechanical loads mimicking osmotic pressure, external solicitation, or active contraction in the vertex model by using the Abaqus FEM solver. Integration of finite element analysis (FEA) into the vertex model achieved a better fit with the biological model. Therefore, the FEM model provides a basis for depicting cell shape, tissue deformation, and cellular-level strain due to imposed stresses. In conclusion, we demonstrated that a combination of vertex and FEM approaches, combining geometrical and mechanical parameters, improves modeling of alterations in organoid morphology over time and enables better assessment of the mechanical cues involved in establishing the architecture of the human colon epithelium.Author summary: This study explores the interplay between biology and mechanics in tissue architecture, particularly the 3D organization of human colonic epithelial organoid. The experimental approach focused on imaging in culture the organoids for 120 hours to follow their morphological maturation. From these images, the architectural and geometric parameters of the biological organoids were extracted and used to create in silico organoid by the vertex method. However, this method did not take into account the mechanical forces involved in the morphological evolution of the organoids. To overcome this limitation, a finite element method was applied to the vertex model. Using the Abaqus solver, mechanical constraints, such as those undergone by biological organoids, were simulated. The integration of FEM into the vertex model improved the correspondence between the biological model and the modeling, providing a more accurate representation of tissue deformations, cellular forces and mechanical tensions undergone by the biological organoid. This method enabled creation of a digital model of the human colon tissue to aid in understanding the roles of mechanical forces in establishing human colon tissue architecture over time.

Suggested Citation

  • Julien Laussu & Deborah Michel & Léa Magne & Stephane Segonds & Steven Marguet & Dimitri Hamel & Muriel Quaranta-Nicaise & Frederick Barreau & Emmanuel Mas & Vincent Velay & Florian Bugarin & Audrey F, 2025. "Deciphering the interplay between biology and physics with a finite element method-implemented vertex organoid model: A tool for the mechanical analysis of cell behavior on a spherical organoid shell," PLOS Computational Biology, Public Library of Science, vol. 21(1), pages 1-29, January.
  • Handle: RePEc:plo:pcbi00:1012681
    DOI: 10.1371/journal.pcbi.1012681
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012681
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012681&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Minoru Takasato & Pei X. Er & Han S. Chiu & Barbara Maier & Gregory J. Baillie & Charles Ferguson & Robert G. Parton & Ernst J. Wolvetang & Matthias S. Roost & Susana M. Chuva de Sousa Lopes & Melissa, 2015. "Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis," Nature, Nature, vol. 526(7574), pages 564-568, October.
    2. Jason R. Spence & Christopher N. Mayhew & Scott A. Rankin & Matthew F. Kuhar & Jefferson E. Vallance & Kathryn Tolle & Elizabeth E. Hoskins & Vladimir V. Kalinichenko & Susanne I. Wells & Aaron M. Zor, 2011. "Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro," Nature, Nature, vol. 470(7332), pages 105-109, February.
    3. Madeline A. Lancaster & Magdalena Renner & Carol-Anne Martin & Daniel Wenzel & Louise S. Bicknell & Matthew E. Hurles & Tessa Homfray & Josef M. Penninger & Andrew P. Jackson & Juergen A. Knoblich, 2013. "Cerebral organoids model human brain development and microcephaly," Nature, Nature, vol. 501(7467), pages 373-379, September.
    4. Mototsugu Eiraku & Nozomu Takata & Hiroki Ishibashi & Masako Kawada & Eriko Sakakura & Satoru Okuda & Kiyotoshi Sekiguchi & Taiji Adachi & Yoshiki Sasai, 2011. "Self-organizing optic-cup morphogenesis in three-dimensional culture," Nature, Nature, vol. 472(7341), pages 51-56, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    2. Naomi Pode-Shakked & Megan Slack & Nambirajan Sundaram & Ruth Schreiber & Kyle W. McCracken & Benjamin Dekel & Michael Helmrath & Raphael Kopan, 2023. "RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Anand Ramani & Giovanni Pasquini & Niklas J. Gerkau & Vaibhav Jadhav & Omkar Suhas Vinchure & Nazlican Altinisik & Hannes Windoffer & Sarah Muller & Ina Rothenaigner & Sean Lin & Aruljothi Mariappan &, 2024. "Reliability of high-quantity human brain organoids for modeling microcephaly, glioma invasion and drug screening," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    5. Guillermo Martínez-Ara & Núria Taberner & Mami Takayama & Elissavet Sandaltzopoulou & Casandra E. Villava & Miquel Bosch-Padrós & Nozomu Takata & Xavier Trepat & Mototsugu Eiraku & Miki Ebisuya, 2022. "Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Jessica D. Rosarda & Sarah Giles & Sarah Harkins-Perry & Elizabeth A. Mills & Martin Friedlander & R. Luke Wiseman & Kevin T. Eade, 2023. "Imbalanced unfolded protein response signaling contributes to 1-deoxysphingolipid retinal toxicity," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Wendiao Zhang & Ming Zhang & Zhenhong Xu & Hongye Yan & Huimin Wang & Jiamei Jiang & Juan Wan & Beisha Tang & Chunyu Liu & Chao Chen & Qingtuan Meng, 2023. "Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Anna Pagliaro & Roxy Finger & Iris Zoutendijk & Saskia Bunschuh & Hans Clevers & Delilah Hendriks & Benedetta Artegiani, 2023. "Temporal morphogen gradient-driven neural induction shapes single expanded neuroepithelium brain organoids with enhanced cortical identity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Tatsuya Osaki & Tomoya Duenki & Siu Yu A. Chow & Yasuhiro Ikegami & Romain Beaubois & Timothée Levi & Nao Nakagawa-Tamagawa & Yoji Hirano & Yoshiho Ikeuchi, 2024. "Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Maura Galimberti & Maria R. Nucera & Vittoria D. Bocchi & Paola Conforti & Elena Vezzoli & Matteo Cereda & Camilla Maffezzini & Raffaele Iennaco & Andrea Scolz & Andrea Falqui & Chiara Cordiglieri & M, 2024. "Huntington’s disease cellular phenotypes are rescued non-cell autonomously by healthy cells in mosaic telencephalic organoids," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    13. Aki Teranishi & Misato Mori & Rihoko Ichiki & Satoshi Toda & Go Shioi & Satoru Okuda, 2024. "An actin bracket-induced elastoplastic transition determines epithelial folding irreversibility," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Nilay Kumar & Jennifer Rangel Ambriz & Kevin Tsai & Mayesha Sahir Mim & Marycruz Flores-Flores & Weitao Chen & Jeremiah J. Zartman & Mark Alber, 2024. "Balancing competing effects of tissue growth and cytoskeletal regulation during Drosophila wing disc development," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Olga A. Balashova & Alexios A. Panoutsopoulos & Olesya Visina & Jacob Selhub & Paul S. Knoepfler & Laura N. Borodinsky, 2024. "Noncanonical function of folate through folate receptor 1 during neural tube formation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Tom Brandstätter & David B. Brückner & Yu Long Han & Ricard Alert & Ming Guo & Chase P. Broedersz, 2023. "Curvature induces active velocity waves in rotating spherical tissues," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Linliang Zhang & Hongyun Wang & Chao Han & Qi Dong & Jie Yan & Weiwei Guo & Chao Shan & Wen Zhao & Pu Chen & Rui Huang & Ying Wu & Yu Chen & Yali Qin & Mingzhou Chen, 2024. "AMFR-mediated Flavivirus NS2A ubiquitination subverts ER-phagy to augment viral pathogenicity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Honghui Zheng & Yilin Feng & Jiyuan Tang & Feifei Yu & Zitian Wang & Jiani Xu & Cheng Hai & Mingyue Jiang & Yifan Cheng & Zhicheng Shao & Ning Ma & Peter E. Lobie & Shaohua Ma, 2025. "Astrocyte-secreted cues promote neural maturation and augment activity in human forebrain organoids," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    19. Christina Kyrousi & Adam C. O’Neill & Agnieska Brazovskaja & Zhisong He & Pavel Kielkowski & Laure Coquand & Rossella Giaimo & Pierpaolo D’ Andrea & Alexander Belka & Andrea Forero Echeverry & Davide , 2021. "Extracellular LGALS3BP regulates neural progenitor position and relates to human cortical complexity," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    20. Feng Lin & Xia Li & Shiyu Sun & Zhongyi Li & Chenglin Lv & Jianbo Bai & Lin Song & Yizhao Han & Bo Li & Jianping Fu & Yue Shao, 2023. "Mechanically enhanced biogenesis of gut spheroids with instability-driven morphomechanics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.