IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012478.html
   My bibliography  Save this article

Regularizing hyperparameters of interacting neural signals in the mouse cortex reflect states of arousal

Author

Listed:
  • Dmitry R Lyamzin
  • Andrea Alamia
  • Mohammad Abdolrahmani
  • Ryo Aoki
  • Andrea Benucci

Abstract

In natural behaviors, multiple neural signals simultaneously drive activation across overlapping brain networks. Due to limitations in the amount of data that can be acquired in common experimental designs, the determination of these interactions is commonly inferred via modeling approaches, which reduce overfitting by finding appropriate regularizing hyperparameters. However, it is unclear whether these hyperparameters can also be related to any aspect of the underlying biological phenomena and help interpret them. We applied a state-of-the-art regularization procedure—automatic locality determination—to interacting neural activations in the mouse posterior cortex associated with movements of the body and eyes. As expected, regularization significantly improved the determination and interpretability of the response interactions. However, regularizing hyperparameters also changed considerably, and seemingly unpredictably, from animal to animal. We found that these variations were not random; rather, they correlated with the variability in visually evoked responses and with the variability in the state of arousal of the animals measured by pupillometry—both pieces of information that were not included in the modeling framework. These observations could be generalized to another commonly used—but potentially less informative—regularization method, ridge regression. Our findings demonstrate that optimal model hyperparameters can be discovery tools that are informative of factors not a priori included in the model’s design.Author summary: Statistical and machine learning models are increasingly being utilized to analyze and interpret neural data, often in conjunction with statistical regularization methods to improve the accuracy and robustness of the models. Here, we demonstrate that regularization techniques can be used to gain insights into neurophysiological phenomena which are not pre-specified in the original modeling framework. This was demonstrated by modeling cortical neural activations in the mouse posterior cortex during a visual discrimination task. Application of a state-of-the-art regularization technique, automatic locality determination (ALD), revealed that the optimized hyperparameters varied irregularly among mice. However, when correlating this variability with neural and behavioral data not initially provided to the model, such as visual-evoked responses and pupil dilations, we observed that the variance in hyperparameters was indicative of across-animal differences in average states of arousal. Additionally, we showed that these conclusions were not limited to ALD, but were also applicable to a simpler regularization technique, ridge regression. Our findings suggest that regularization hyperparameters can be utilized as valuable discovery tools and should be employed more frequently for data interpretation alongside model parameters.

Suggested Citation

  • Dmitry R Lyamzin & Andrea Alamia & Mohammad Abdolrahmani & Ryo Aoki & Andrea Benucci, 2024. "Regularizing hyperparameters of interacting neural signals in the mouse cortex reflect states of arousal," PLOS Computational Biology, Public Library of Science, vol. 20(10), pages 1-25, October.
  • Handle: RePEc:plo:pcbi00:1012478
    DOI: 10.1371/journal.pcbi.1012478
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012478
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012478&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Mattia Rigotti & Omri Barak & Melissa R. Warden & Xiao-Jing Wang & Nathaniel D. Daw & Earl K. Miller & Stefano Fusi, 2013. "The importance of mixed selectivity in complex cognitive tasks," Nature, Nature, vol. 497(7451), pages 585-590, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Bolaños & Javier G. Orlandi & Ryo Aoki & Akshay V. Jagadeesh & Justin L. Gardner & Andrea Benucci, 2024. "Efficient coding of natural images in the mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Fabian Grabenhorst & Raymundo Báez-Mendoza, 2025. "Dynamic coding and sequential integration of multiple reward attributes by primate amygdala neurons," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    3. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    4. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    6. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Hao Guo & Shenbing Kuang & Alexander Gail, 2025. "Sensorimotor environment but not task rule reconfigures population dynamics in rhesus monkey posterior parietal cortex," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    10. Zhewei Zhang & Chaoqun Yin & Tianming Yang, 2022. "Evidence accumulation occurs locally in the parietal cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    13. Rishi Rajalingham & Hansem Sohn & Mehrdad Jazayeri, 2025. "Dynamic tracking of objects in the macaque dorsomedial frontal cortex," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    14. Mikael Lundqvist & Scott L. Brincat & Jonas Rose & Melissa R. Warden & Timothy J. Buschman & Earl K. Miller & Pawel Herman, 2023. "Working memory control dynamics follow principles of spatial computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    16. Kiyohito Iigaya & Sanghyun Yi & Iman A. Wahle & Sandy Tanwisuth & Logan Cross & John P. O’Doherty, 2023. "Neural mechanisms underlying the hierarchical construction of perceived aesthetic value," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Seong-Hwan Hwang & Doyoung Park & Ji-Woo Lee & Sue-Hyun Lee & Hyoung F. Kim, 2024. "Convergent representation of values from tactile and visual inputs for efficient goal-directed behavior in the primate putamen," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Takuya Ito & Guangyu Robert Yang & Patryk Laurent & Douglas H. Schultz & Michael W. Cole, 2022. "Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Tianwei Wang & Yun Chen & Yiheng Zhang & He Cui, 2024. "Multiplicative joint coding in preparatory activity for reaching sequence in macaque motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Spyridon Chavlis & Panayiota Poirazi, 2025. "Dendrites endow artificial neural networks with accurate, robust and parameter-efficient learning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.