IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012275.html
   My bibliography  Save this article

COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms

Author

Listed:
  • Teemu J Rintala
  • Vittorio Fortino

Abstract

Recent research on multi-view clustering algorithms for complex disease subtyping often overlooks aspects like clustering stability and critical assessment of prognostic relevance. Furthermore, current frameworks do not allow for a comparison between data-driven and pathway-driven clustering, highlighting a significant gap in the methodology. We present the COPS R-package, tailored for robust evaluation of single and multi-omics clustering results. COPS features advanced methods, including similarity networks, kernel-based approaches, dimensionality reduction, and pathway knowledge integration. Some of these methods are not accessible through R, and some correspond to new approaches proposed with COPS. Our framework was rigorously applied to multi-omics data across seven cancer types, including breast, prostate, and lung, utilizing mRNA, CNV, miRNA, and DNA methylation data. Unlike previous studies, our approach contrasts data- and knowledge-driven multi-view clustering methods and incorporates cross-fold validation for robustness. Clustering outcomes were assessed using the ARI score, survival analysis via Cox regression models including relevant covariates, and the stability of the results. While survival analysis and gold-standard agreement are standard metrics, they vary considerably across methods and datasets. Therefore, it is essential to assess multi-view clustering methods using multiple criteria, from cluster stability to prognostic relevance, and to provide ways of comparing these metrics simultaneously to select the optimal approach for disease subtype discovery in novel datasets. Emphasizing multi-objective evaluation, we applied the Pareto efficiency concept to gauge the equilibrium of evaluation metrics in each cancer case-study. Affinity Network Fusion, Integrative Non-negative Matrix Factorization, and Multiple Kernel K-Means with linear or Pathway Induced Kernels were the most stable and effective in discerning groups with significantly different survival outcomes in several case studies.Author summary: We developed COPS (Clustering algorithms for Omics-driven Patient Stratification), a computational platform to tackle challenges in disease subtype discovery using single or multi-omics data. COPS employs innovative methods for assessing clustering stability and utilizes the Pareto optimal criterion to find solutions balancing clustering evaluation metrics and clinical relevance. Our comprehensive comparison across several multi-omic cancer datasets demonstrated the efficacy of both pathway-based and non-pathway-based methods in different contexts. Furthermore, we introduced two new methods utilizing pathway graph kernels and multiple kernel learning for pathway-based patient stratification. In our benchmarking study, we observed that different clustering algorithms yielded solutions with different trade-offs between clustering stability, association with known subtypes, and significance of survival differences between the clusters. This work underscores the need for future clustering algorithms to simultaneously address both stability and clinical relevance.

Suggested Citation

  • Teemu J Rintala & Vittorio Fortino, 2024. "COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms," PLOS Computational Biology, Public Library of Science, vol. 20(8), pages 1-23, August.
  • Handle: RePEc:plo:pcbi00:1012275
    DOI: 10.1371/journal.pcbi.1012275
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012275
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012275&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles M. Perou & Therese Sørlie & Michael B. Eisen & Matt van de Rijn & Stefanie S. Jeffrey & Christian A. Rees & Jonathan R. Pollack & Douglas T. Ross & Hilde Johnsen & Lars A. Akslen & Øystein Flu, 2000. "Molecular portraits of human breast tumours," Nature, Nature, vol. 406(6797), pages 747-752, August.
    2. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    3. Laura Cantini & Pooya Zakeri & Celine Hernandez & Aurelien Naldi & Denis Thieffry & Elisabeth Remy & Anaïs Baudot, 2021. "Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    2. Sun Jiehuan & Warren Joshua L. & Zhao Hongyu, 2017. "A Bayesian semiparametric factor analysis model for subtype identification," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(2), pages 145-158, April.
    3. Zhiguang Huo & Ying Ding & Silvia Liu & Steffi Oesterreich & George Tseng, 2016. "Meta-Analytic Framework for Sparse K -Means to Identify Disease Subtypes in Multiple Transcriptomic Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 27-42, March.
    4. Lingsong Meng & Dorina Avram & George Tseng & Zhiguang Huo, 2022. "Outcome‐guided sparse K‐means for disease subtype discovery via integrating phenotypic data with high‐dimensional transcriptomic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 352-375, March.
    5. Miriam Aparicio, 2021. "Resiliency and Cooperation or Regarding Social and Collective Competencies for University Achievement. An Analysis from a Systemic Perspective," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, ejser_v8_.
    6. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    7. Yang, Xi & Hoadley, Katherine A. & Hannig, Jan & Marron, J.S., 2023. "Jackstraw inference for AJIVE data integration," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    8. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    9. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    10. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    11. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    12. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    13. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    14. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    15. Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
    16. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    17. Yue Wan & Jialu Wu & Tingjun Hou & Chang-Yu Hsieh & Xiaowei Jia, 2025. "Multi-channel learning for integrating structural hierarchies into context-dependent molecular representation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    18. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    19. Matthijs Warrens, 2010. "Inequalities Between Kappa and Kappa-Like Statistics for k×k Tables," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 176-185, March.
    20. Manish G & Anil Kumar Badana & Rama Rao Malla, 2017. "Emerging Diagnostic and Prognostic Biomarkers of Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(3), pages 561-565, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.