IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011362.html
   My bibliography  Save this article

Synaptic weights that correlate with presynaptic selectivity increase decoding performance

Author

Listed:
  • Júlia V Gallinaro
  • Benjamin Scholl
  • Claudia Clopath

Abstract

The activity of neurons in the visual cortex is often characterized by tuning curves, which are thought to be shaped by Hebbian plasticity during development and sensory experience. This leads to the prediction that neural circuits should be organized such that neurons with similar functional preference are connected with stronger weights. In support of this idea, previous experimental and theoretical work have provided evidence for a model of the visual cortex characterized by such functional subnetworks. A recent experimental study, however, have found that the postsynaptic preferred stimulus was defined by the total number of spines activated by a given stimulus and independent of their individual strength. While this result might seem to contradict previous literature, there are many factors that define how a given synaptic input influences postsynaptic selectivity. Here, we designed a computational model in which postsynaptic functional preference is defined by the number of inputs activated by a given stimulus. Using a plasticity rule where synaptic weights tend to correlate with presynaptic selectivity, and is independent of functional-similarity between pre- and postsynaptic activity, we find that this model can be used to decode presented stimuli in a manner that is comparable to maximum likelihood inference.Author summary: Brains are composed of complex networks, with communication taking place along synaptic connections between neurons. These connections can change and adapt, a process we call “plasticity”. However, the specific rules that dictate these changes remain largely unknown. In our visual system, which is responsible for vision and perception, it is primarily thought that connections get stronger between neurons exhibiting similar activity, also known as ‘Hebbian plasticity’. A recent study revealed results that seemed to contradict this idea, showing a strength in numbers of synapses rather than strength. Prompted by these findings, we developed a computational model with a hypothesis about how these changes could occur. We discovered that this new model, with a plasticity mechanism based on presynaptic activity, could capture experimental findings and lead to benefits in population decoding. Our model doesn’t necessarily contradict a Hebbian model, but rather, likely co-exists with it.

Suggested Citation

  • Júlia V Gallinaro & Benjamin Scholl & Claudia Clopath, 2023. "Synaptic weights that correlate with presynaptic selectivity increase decoding performance," PLOS Computational Biology, Public Library of Science, vol. 19(8), pages 1-18, August.
  • Handle: RePEc:plo:pcbi00:1011362
    DOI: 10.1371/journal.pcbi.1011362
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011362
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011362&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lee Cossell & Maria Florencia Iacaruso & Dylan R. Muir & Rachael Houlton & Elie N. Sader & Ho Ko & Sonja B. Hofer & Thomas D. Mrsic-Flogel, 2015. "Functional organization of excitatory synaptic strength in primary visual cortex," Nature, Nature, vol. 518(7539), pages 399-403, February.
    2. Ho Ko & Sonja B. Hofer & Bruno Pichler & Katherine A. Buchanan & P. Jesper Sjöström & Thomas D. Mrsic-Flogel, 2011. "Functional specificity of local synaptic connections in neocortical networks," Nature, Nature, vol. 473(7345), pages 87-91, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Bartul Mimica & Tuçe Tombaz & Claudia Battistin & Jingyi Guo Fuglstad & Benjamin A. Dunn & Jonathan R. Whitlock, 2023. "Behavioral decomposition reveals rich encoding structure employed across neocortex in rats," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. repec:plo:pcbi00:1006535 is not listed on IDEAS
    4. Luyan Yu & Thibaud O Taillefumier, 2022. "Metastable spiking networks in the replica-mean-field limit," PLOS Computational Biology, Public Library of Science, vol. 18(6), pages 1-36, June.
    5. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    6. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Christopher Ebsch & Robert Rosenbaum, 2018. "Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-28, March.
    9. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. Brian B. Jeon & Thomas Fuchs & Steven M. Chase & Sandra J. Kuhlman, 2022. "Existing function in primary visual cortex is not perturbed by new skill acquisition of a non-matched sensory task," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    13. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    15. Thaddeus R Cybulski & Edward S Boyden & George M Church & Keith E J Tyo & Konrad P Kording, 2017. "Nucleotide-time alignment for molecular recorders," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-22, May.
    16. Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    17. repec:plo:pone00:0094292 is not listed on IDEAS
    18. Yifan Gu & Yang Qi & Pulin Gong, 2019. "Rich-club connectivity, diverse population coupling, and dynamical activity patterns emerging from local cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-34, April.
    19. Takafumi Arakaki & G Barello & Yashar Ahmadian, 2019. "Inferring neural circuit structure from datasets of heterogeneous tuning curves," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-38, April.
    20. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    21. Markus Helmer & Vladislav Kozyrev & Valeska Stephan & Stefan Treue & Theo Geisel & Demian Battaglia, 2016. "Model-Free Estimation of Tuning Curves and Their Attentional Modulation, Based on Sparse and Noisy Data," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-33, January.
    22. Jeyadarshan Jeyabalaratnam & Vishal Bharmauria & Lyes Bachatene & Sarah Cattan & Annie Angers & Stéphane Molotchnikoff, 2013. "Adaptation Shifts Preferred Orientation of Tuning Curve in the Mouse Visual Cortex," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.