Author
Listed:
- Rainer Engelken
- Alessandro Ingrosso
- Ramin Khajeh
- Sven Goedeke
- L F Abbott
Abstract
Neural circuits exhibit complex activity patterns, both spontaneously and evoked by external stimuli. Information encoding and learning in neural circuits depend on how well time-varying stimuli can control spontaneous network activity. We show that in firing-rate networks in the balanced state, external control of recurrent dynamics, i.e., the suppression of internally-generated chaotic variability, strongly depends on correlations in the input. A distinctive feature of balanced networks is that, because common external input is dynamically canceled by recurrent feedback, it is far more difficult to suppress chaos with common input into each neuron than through independent input. To study this phenomenon, we develop a non-stationary dynamic mean-field theory for driven networks. The theory explains how the activity statistics and the largest Lyapunov exponent depend on the frequency and amplitude of the input, recurrent coupling strength, and network size, for both common and independent input. We further show that uncorrelated inputs facilitate learning in balanced networks.Author summary: Information in the brain is processed by a deeply-layered structure of local recurrent neural circuits. Recurrent neural networks often exhibit spontaneous irregular activity patterns that arise generically through the disordered interactions between neurons. Understanding under which conditions one circuit can control the activity patterns in another circuit and suppress spontaneous, chaotic fluctuations is crucial to unravel information flow and learning input-output tasks.
Suggested Citation
Rainer Engelken & Alessandro Ingrosso & Ramin Khajeh & Sven Goedeke & L F Abbott, 2022.
"Input correlations impede suppression of chaos and learning in balanced firing-rate networks,"
PLOS Computational Biology, Public Library of Science, vol. 18(12), pages 1-23, December.
Handle:
RePEc:plo:pcbi00:1010590
DOI: 10.1371/journal.pcbi.1010590
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010590. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.