IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010505.html
   My bibliography  Save this article

Computational multiplex panel reduction to maximize information retention in breast cancer tissue microarrays

Author

Listed:
  • Luke Ternes
  • Jia-Ren Lin
  • Yu-An Chen
  • Joe W Gray
  • Young Hwan Chang

Abstract

Recent state-of-the-art multiplex imaging techniques have expanded the depth of information that can be captured within a single tissue sample by allowing for panels with dozens of markers. Despite this increase in capacity, space on the panel is still limited due to technical artifacts, tissue loss, and long imaging acquisition time. As such, selecting which markers to include on a panel is important, since removing important markers will result in a loss of biologically relevant information, but identifying redundant markers will provide a room for other markers. To address this, we propose computational approaches to determine the amount of shared information between markers and select an optimally reduced panel that captures maximum amount of information with the fewest markers. Here we examine several panel selection approaches and evaluate them based on their ability to reconstruct the full panel images and information within breast cancer tissue microarray datasets using cyclic immunofluorescence as a proof of concept. We show that all methods perform adequately and can re-capture cell types using only 18 of 25 markers (72% of the original panel size). The correlation-based selection methods achieved the best single-cell marker mean intensity predictions with a Spearman correlation of 0.90 with the reduced panel. Using the proposed methods shown here, it is possible for researchers to design more efficient multiplex imaging panels that maximize the amount of information retained with the limited number of markers with respect to certain evaluation metrics and architecture biases.Author summary: Multiplex tissue imaging techniques utilize large panels of markers that attempt to gather as much information as possible, but increasing the number of stains does come with the downsides of increased autofluorescence and tissue degradation. There exists a theoretical subsampling of markers that is able to recreate the same information as a full panel; therefore, removing the self-correlating information with such a subset would increase the efficiency of the imaging process and maximize the information collected. By selecting an idealized subsample of markers, a deep learning model can be trained to predict the same information as a full dataset with fewer rounds of staining. Here we evaluate several methods of subsample marker selection and demonstrate their ability to reconstruct the full panel’s information.

Suggested Citation

  • Luke Ternes & Jia-Ren Lin & Yu-An Chen & Joe W Gray & Young Hwan Chang, 2022. "Computational multiplex panel reduction to maximize information retention in breast cancer tissue microarrays," PLOS Computational Biology, Public Library of Science, vol. 18(9), pages 1-19, September.
  • Handle: RePEc:plo:pcbi00:1010505
    DOI: 10.1371/journal.pcbi.1010505
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010505
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010505&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hartland W. Jackson & Jana R. Fischer & Vito R. T. Zanotelli & H. Raza Ali & Robert Mechera & Savas D. Soysal & Holger Moch & Simone Muenst & Zsuzsanna Varga & Walter P. Weber & Bernd Bodenmiller, 2020. "The single-cell pathology landscape of breast cancer," Nature, Nature, vol. 578(7796), pages 615-620, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuju Lee & Edward L. Y. Chen & Darren C. H. Chan & Anuroopa Dinesh & Somaieh Afiuni-Zadeh & Conor Klamann & Alina Selega & Miralem Mrkonjic & Hartland W. Jackson & Kieran R. Campbell, 2025. "Segmentation aware probabilistic phenotyping of single-cell spatial protein expression data," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Jingyang Qian & Xin Shao & Hudong Bao & Yin Fang & Wenbo Guo & Chengyu Li & Anyao Li & Hua Hua & Xiaohui Fan, 2025. "Identification and characterization of cell niches in tissue from spatial omics data at single-cell resolution," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    3. Juan Du & Junlei Zhang & Lin Wang & Xun Wang & Yaxing Zhao & Jiaoying Lu & Tingmin Fan & Meng Niu & Jie Zhang & Fei Cheng & Jun Li & Qi Zhu & Daoqiang Zhang & Hao Pei & Guang Li & Xingguang Liang & He, 2023. "Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Michael J. Geuenich & Dae-won Gong & Kieran R. Campbell, 2024. "The impacts of active and self-supervised learning on efficient annotation of single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yunhao Bai & Bokai Zhu & John-Paul Oliveria & Bryan J. Cannon & Dorien Feyaerts & Marc Bosse & Kausalia Vijayaragavan & Noah F. Greenwald & Darci Phillips & Christian M. Schürch & Samuel M. Naik & Edw, 2023. "Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Rui Chen & Jiasu Xu & Boqian Wang & Yi Ding & Aynur Abdulla & Yiyang Li & Lai Jiang & Xianting Ding, 2024. "SpiDe-Sr: blind super-resolution network for precise cell segmentation and clustering in spatial proteomics imaging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Alastair Magness & Emma Colliver & Katey S. S. Enfield & Claudia Lee & Masako Shimato & Emer Daly & David A. Moore & Monica Sivakumar & Karishma Valand & Dina Levi & Crispin T. Hiley & Philip S. Hobso, 2024. "Deep cell phenotyping and spatial analysis of multiplexed imaging with TRACERx-PHLEX," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Sandra Tietscher & Johanna Wagner & Tobias Anzeneder & Claus Langwieder & Martin Rees & Bettina Sobottka & Natalie Souza & Bernd Bodenmiller, 2023. "A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Kaiwen Wang & Yuqiu Yang & Fangjiang Wu & Bing Song & Xinlei Wang & Tao Wang, 2023. "Comparative analysis of dimension reduction methods for cytometry by time-of-flight data," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Vincent Geldhof & Laura P. M. H. Rooij & Liliana Sokol & Jacob Amersfoort & Maxim Schepper & Katerina Rohlenova & Griet Hoste & Adriaan Vanderstichele & Anne-Marie Delsupehe & Edoardo Isnaldi & Naima , 2022. "Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Nastaran Mohammadi Ghahhari & Magdalena K. Sznurkowska & Nicolas Hulo & Lilia Bernasconi & Nicola Aceto & Didier Picard, 2022. "Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Lysanne Desharnais & Mark Sorin & Morteza Rezanejad & Bridget Liu & Elham Karimi & Aline Atallah & Anikka M. Swaby & Miranda W. Yu & Samuel Doré & Saskia Hartner & Benoit Fiset & Yuhong Wei & Baharak , 2025. "Spatially mapping the tumour immune microenvironments of non-small cell lung cancer," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    15. Vázquez López, Raul, 2023. "La competitividad de las exportaciones del sector químico mexicano en los Estados Unidos de América y la Unión Europea, 1994-2015," Apuntes del Cenes, Universidad Pedagógica y Tecnológica de Colombia, vol. 42(75), pages 83-109, January.
    16. Darci Phillips & Magdalena Matusiak & Belén Rivero Gutierrez & Salil S. Bhate & Graham L. Barlow & Sizun Jiang & Janos Demeter & Kimberly S. Smythe & Robert H. Pierce & Steven P. Fling & Nirasha Ramch, 2021. "Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    17. Anissa El Marrahi & Fabio Lipreri & Ziqi Kang & Louise Gsell & Alper Eroglu & David Alber & Jean Hausser, 2023. "NIPMAP: niche-phenotype mapping of multiplex histology data by community ecology," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Thomas Hu & Mayar Allam & Shuangyi Cai & Walter Henderson & Brian Yueh & Aybuke Garipcan & Anton V. Ievlev & Maryam Afkarian & Semir Beyaz & Ahmet F. Coskun, 2023. "Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    19. Hugo Croizer & Rana Mhaidly & Yann Kieffer & Geraldine Gentric & Lounes Djerroudi & Renaud Leclere & Floriane Pelon & Catherine Robley & Mylene Bohec & Arnaud Meng & Didier Meseure & Emanuela Romano &, 2024. "Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-28, December.
    20. Candace C. Liu & Noah F. Greenwald & Alex Kong & Erin F. McCaffrey & Ke Xuan Leow & Dunja Mrdjen & Bryan J. Cannon & Josef Lorenz Rumberger & Sricharan Reddy Varra & Michael Angelo, 2023. "Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.