IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010348.html
   My bibliography  Save this article

Nine quick tips for pathway enrichment analysis

Author

Listed:
  • Davide Chicco
  • Giuseppe Agapito

Abstract

Pathway enrichment analysis (PEA) is a computational biology method that identifies biological functions that are overrepresented in a group of genes more than would be expected by chance and ranks these functions by relevance. The relative abundance of genes pertinent to specific pathways is measured through statistical methods, and associated functional pathways are retrieved from online bioinformatics databases. In the last decade, along with the spread of the internet, higher availability of computational resources made PEA software tools easy to access and to use for bioinformatics practitioners worldwide. Although it became easier to use these tools, it also became easier to make mistakes that could generate inflated or misleading results, especially for beginners and inexperienced computational biologists. With this article, we propose nine quick tips to avoid common mistakes and to out a complete, sound, thorough PEA, which can produce relevant and robust results. We describe our nine guidelines in a simple way, so that they can be understood and used by anyone, including students and beginners. Some tips explain what to do before starting a PEA, others are suggestions of how to correctly generate meaningful results, and some final guidelines indicate some useful steps to properly interpret PEA results. Our nine tips can help users perform better pathway enrichment analyses and eventually contribute to a better understanding of current biology.

Suggested Citation

  • Davide Chicco & Giuseppe Agapito, 2022. "Nine quick tips for pathway enrichment analysis," PLOS Computational Biology, Public Library of Science, vol. 18(8), pages 1-15, August.
  • Handle: RePEc:plo:pcbi00:1010348
    DOI: 10.1371/journal.pcbi.1010348
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010348
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010348&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Chen & Kay Grennan & Judith Badner & Dandan Zhang & Elliot Gershon & Li Jin & Chunyu Liu, 2011. "Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-10, February.
    2. Graham J. G. Upton, 1992. "Fisher's Exact Test," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 155(3), pages 395-402, May.
    3. repec:plo:pcbi00:1000424 is not listed on IDEAS
    4. repec:plo:pcbi00:1003285 is not listed on IDEAS
    5. Arne Elofsson & Berk Hess & Erik Lindahl & Alexey Onufriev & David van der Spoel & Anders Wallqvist, 2019. "Ten simple rules on how to create open access and reproducible molecular simulations of biological systems," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-4, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam C. Sales & Ben B. Hansen, 2020. "Limitless Regression Discontinuity," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 143-174, April.
    2. Xia Qing & Thompson Jeffrey A. & Koestler Devin C., 2021. "Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE)," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 20(4-6), pages 101-119, December.
    3. Yanis Tazi & Juan E. Arango-Ossa & Yangyu Zhou & Elsa Bernard & Ian Thomas & Amanda Gilkes & Sylvie Freeman & Yoann Pradat & Sean J. Johnson & Robert Hills & Richard Dillon & Max F. Levine & Daniel Le, 2022. "Unified classification and risk-stratification in Acute Myeloid Leukemia," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Eugene Seneta & Geoffrey Berry & Petra Macaskill, 1999. "Adjustment to Lancaster's Mid-P," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 229-240, September.
    5. Wei Liu & Huaqin He & Davide Chicco, 2024. "Gene signatures for cancer research: A 25-year retrospective and future avenues," PLOS Computational Biology, Public Library of Science, vol. 20(10), pages 1-10, October.
    6. repec:plo:pone00:0086531 is not listed on IDEAS
    7. Jacopo Umberto Verga & Matthew Huff & Diarmuid Owens & Bethany J. Wolf & Gary Hardiman, 2022. "Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes," IJERPH, MDPI, vol. 19(1), pages 1-24, January.
    8. Aline Talhouk & Stefan Kommoss & Robertson Mackenzie & Martin Cheung & Samuel Leung & Derek S Chiu & Steve E Kalloger & David G Huntsman & Stephanie Chen & Maria Intermaggio & Jacek Gronwald & Fong C , 2016. "Single-Patient Molecular Testing with NanoString nCounter Data Using a Reference-Based Strategy for Batch Effect Correction," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-18, April.
    9. Charlotte Soneson & Sarah Gerster & Mauro Delorenzi, 2014. "Batch Effect Confounding Leads to Strong Bias in Performance Estimates Obtained by Cross-Validation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.
    10. Sean M Gibbons & Claire Duvallet & Eric J Alm, 2018. "Correcting for batch effects in case-control microbiome studies," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-17, April.
    11. Samir Dou & Nathalie Villa-Vialaneix & Laurence Liaubet & Yvon Billon & Mario Giorgi & Hélène Gilbert & Jean-Luc Gourdine & Juliette Riquet & David Renaudeau, 2017. "1H NMR-Based metabolomic profiling method to develop plasma biomarkers for sensitivity to chronic heat stress in growing pigs," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-18, November.
    12. Christian Müller & Arne Schillert & Caroline Röthemeier & David-Alexandre Trégouët & Carole Proust & Harald Binder & Norbert Pfeiffer & Manfred Beutel & Karl J Lackner & Renate B Schnabel & Laurence T, 2016. "Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
    13. Miroslav Ferenèak & Dušan Dobromirov & Mladen Radišiæ & Aleksandar Takaèi, 2018. "Aversion to a sure loss: turning investors into gamblers," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(2), pages 537-557.
    14. Alice Guerra & Enya Turrini, 2025. "Social norms on unethical behaviors in the workplace: a lab experiment," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 72(1), pages 1-25, June.
    15. Kasianova, Ksenia & Kelbert, Mark & Mozgunov, Pavel, 2021. "Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    16. Romain Banchereau & Alejandro Jordan-Villegas & Monica Ardura & Asuncion Mejias & Nicole Baldwin & Hui Xu & Elizabeth Saye & Jose Rossello-Urgell & Phuong Nguyen & Derek Blankenship & Clarence B Creec, 2012. "Host Immune Transcriptional Profiles Reflect the Variability in Clinical Disease Manifestations in Patients with Staphylococcus aureus Infections," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-11, April.
    17. Qi Su & Qin Liu & Raphaela Iris Lau & Jingwan Zhang & Zhilu Xu & Yun Kit Yeoh & Thomas W. H. Leung & Whitney Tang & Lin Zhang & Jessie Q. Y. Liang & Yuk Kam Yau & Jiaying Zheng & Chengyu Liu & Mengjin, 2022. "Faecal microbiome-based machine learning for multi-class disease diagnosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Yang, Siluo & Zheng, Mengxue & Yu, Yonghao & Wolfram, Dietmar, 2021. "Are Altmetric.com scores effective for research impact evaluation in the social sciences and humanities?," Journal of Informetrics, Elsevier, vol. 15(1).
    19. Zunlan Zhao & Shouhang Chen & Hongzhao Wei & Weile Ma & Weili Shi & Yixin Si & Jun Wang & Liuyi Wang & Xiqing Li, 2024. "Online application for the diagnosis of atherosclerosis by six genes," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-15, April.
    20. Nazifa Ahmed Moumi & Badhan Das & Zarin Tasnim Promi & Nishat Anjum Bristy & Md Shamsuzzoha Bayzid, 2019. "Quartet-based inference of cell differentiation trees from ChIP-Seq histone modification data," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-25, September.
    21. Raihan K Uddin & Shiva M Singh, 2013. "Hippocampal Gene Expression Meta-Analysis Identifies Aging and Age-Associated Spatial Learning Impairment (ASLI) Genes and Pathways," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.