IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010167.html
   My bibliography  Save this article

Learning the statistics and landscape of somatic mutation-induced insertions and deletions in antibodies

Author

Listed:
  • Cosimo Lupo
  • Natanael Spisak
  • Aleksandra M Walczak
  • Thierry Mora

Abstract

Affinity maturation is crucial for improving the binding affinity of antibodies to antigens. This process is mainly driven by point substitutions caused by somatic hypermutations of the immunoglobulin gene. It also includes deletions and insertions of genomic material known as indels. While the landscape of point substitutions has been extensively studied, a detailed statistical description of indels is still lacking. Here we present a probabilistic inference tool to learn the statistics of indels from repertoire sequencing data, which overcomes the pitfalls and biases of standard annotation methods. The model includes antibody-specific maturation ages to account for variable mutational loads in the repertoire. After validation on synthetic data, we applied our tool to a large dataset of human immunoglobulin heavy chains. The inferred model allows us to identify universal statistical features of indels in heavy chains. We report distinct insertion and deletion hotspots, and show that the distribution of lengths of indels follows a geometric distribution, which puts constraints on future mechanistic models of the hypermutation process.Author summary: Affinity maturation of B cell receptors is an important mechanism by which our body designs neutralizing antibodies to defend us against pathogens, including broadly neutralizing antibodies, which target a wide range of variants of the same pathogen. Such antibodies often contain key insertions and deletions to the germline gene, or “indels”, which are caused by somatic hypermutations. However, the mechanism, frequency and role of these indels are still elusive. We designed a computational method based on a probabilistic framework to infer the characteristics of this mutational process from high-throughput antibody sequencing experiments. Applied to human data, our approach provides a comprehensive quantitative description of insertions and deletions, opening avenues for better understanding the process of affinity maturation and the design of vaccines for eliciting a broad antibody response.

Suggested Citation

  • Cosimo Lupo & Natanael Spisak & Aleksandra M Walczak & Thierry Mora, 2022. "Learning the statistics and landscape of somatic mutation-induced insertions and deletions in antibodies," PLOS Computational Biology, Public Library of Science, vol. 18(6), pages 1-23, June.
  • Handle: RePEc:plo:pcbi00:1010167
    DOI: 10.1371/journal.pcbi.1010167
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010167
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010167&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Quentin Marcou & Thierry Mora & Aleksandra M. Walczak, 2018. "High-throughput immune repertoire analysis with IGoR," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Bryan Briney & Anne Inderbitzin & Collin Joyce & Dennis R. Burton, 2019. "Commonality despite exceptional diversity in the baseline human antibody repertoire," Nature, Nature, vol. 566(7744), pages 393-397, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar L. Rodriguez & Yana Safonova & Catherine A. Silver & Kaitlyn Shields & William S. Gibson & Justin T. Kos & David Tieri & Hanzhong Ke & Katherine J. L. Jackson & Scott D. Boyd & Melissa L. Smith , 2023. "Genetic variation in the immunoglobulin heavy chain locus shapes the human antibody repertoire," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Christoph Kreer & Cosimo Lupo & Meryem S. Ercanoglu & Lutz Gieselmann & Natanael Spisak & Jan Grossbach & Maike Schlotz & Philipp Schommers & Henning Gruell & Leona Dold & Andreas Beyer & Armita Nourm, 2023. "Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Nima Nouri & Steven H Kleinstein, 2020. "Somatic hypermutation analysis for improved identification of B cell clonal families from next-generation sequencing data," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-22, June.
    4. Aleksandr Kovaltsuk & Matthew I J Raybould & Wing Ki Wong & Claire Marks & Sebastian Kelm & James Snowden & Johannes Trück & Charlotte M Deane, 2020. "Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    5. Eduardo Gomez-Bañuelos & Yikai Yu & Jessica Li & Kevin S. Cashman & Merlin Paz & Maria Isabel Trejo-Zambrano & Regina Bugrovsky & Youliang Wang & Asiya Seema Chida & Cheryl A. Sherman-Baust & Dylan P., 2023. "Affinity maturation generates pathogenic antibodies with dual reactivity to DNase1L3 and dsDNA in systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Yubin Liu & Ziyi Wang & Xinyu Zhuang & Shengnan Zhang & Zhicheng Chen & Yan Zou & Jie Sheng & Tianpeng Li & Wanbo Tai & Jinfang Yu & Yanqun Wang & Zhaoyong Zhang & Yunfeng Chen & Liangqin Tong & Xi Yu, 2023. "Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Joan Capella-Pujol & Marlon Gast & Laura Radić & Ian Zon & Ana Chumbe & Sylvie Koekkoek & Wouter Olijhoek & Janke Schinkel & Marit J. Gils & Rogier W. Sanders & Kwinten Sliepen, 2023. "Signatures of VH1-69-derived hepatitis C virus neutralizing antibody precursors defined by binding to envelope glycoproteins," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Yi-Chun Hsiao & Heidi Ackerly Wallweber & Robert G. Alberstein & Zhonghua Lin & Changchun Du & Ainhoa Etxeberria & Theint Aung & Yonglei Shang & Dhaya Seshasayee & Franziska Seeger & Andrew M. Watkins, 2024. "Rapid affinity optimization of an anti-TREM2 clinical lead antibody by cross-lineage immune repertoire mining," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Jos Urbanus & Jason Cosgrove & Joost B. Beltman & Yuval Elhanati & Rafael A. Moral & Cecile Conrad & Jeroen W. Heijst & Emilie Tubeuf & Arno Velds & Lianne Kok & Candice Merle & Jens P. Magnusson & Lé, 2023. "DRAG in situ barcoding reveals an increased number of HSPCs contributing to myelopoiesis with age," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Chengzi I. Kaku & Tyler N. Starr & Panpan Zhou & Haley L. Dugan & Paul Khalifé & Ge Song & Elizabeth R. Champney & Daniel W. Mielcarz & James C. Geoghegan & Dennis R. Burton & Raiees Andrabi & Jesse D, 2023. "Evolution of antibody immunity following Omicron BA.1 breakthrough infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Mathieu Claireaux & Tom G. Caniels & Marlon Gast & Julianna Han & Denise Guerra & Gius Kerster & Barbera D. C. Schaik & Aldo Jongejan & Angela I. Schriek & Marloes Grobben & Philip J. M. Brouwer & Kar, 2022. "A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.