Author
Listed:
- Andrew P. Cazier
(Georgia Institute of Technology)
- Jaewoo Son
(Georgia Institute of Technology)
- Sreenivas Yellayi
(Georgia Institute of Technology)
- Lizmarie S. Chavez
(Georgia Institute of Technology)
- Caden Young
(Georgia Institute of Technology)
- Olivia M. Irvin
(Georgia Institute of Technology)
- Hannah Abraham
(Georgia Institute of Technology)
- Saachi Dalvi
(Georgia Institute of Technology)
- John Blazeck
(Georgia Institute of Technology
Georgia Institute of Technology
Georgia Institute of Technology
Emory University and Georgia Institute of Technology)
Abstract
V(D)J recombination is integral to the development of antibody diversity and proceeds through a complex DNA cleavage and repair process mediated by several proteins, including recombination-activating genes 1 and 2, RAG1 and RAG2. V(D)J recombination occurs in all jawed vertebrates but is absent from evolutionarily distant relatives, including the yeast Saccharomyces cerevisiae. As yeast grow quickly and are a platform for antibody display, engineering yeast to undergo V(D)J recombination could expand their applicability for studying antibody development. Therefore, in this work we incorporate RAG1 and RAG2 into yeast and characterize the resulting recombination ability using a split antibiotic resistance assay, demonstrating successful homology-assisted formation of coding joints. By pursuing a variety of strategies, we increase the rate of homology-assisted recombination by over 7000-fold, with the best rates approaching 1% recombination after four days. We further show that our platform can assay the severity of several disease-causing RAG1 mutations. Finally, we use our engineered yeast to simultaneously generate up to three unique fluorescent proteins or two distinct antibody fragments starting from an array of nonfunctional gene fragments, which we believe to be the first-ever generation of genetic and phenotypic diversity solely using random recombination of preexisting DNA in a non-vertebrate cell.
Suggested Citation
Andrew P. Cazier & Jaewoo Son & Sreenivas Yellayi & Lizmarie S. Chavez & Caden Young & Olivia M. Irvin & Hannah Abraham & Saachi Dalvi & John Blazeck, 2025.
"Generating combinatorial diversity via engineered V(D)J-like recombination in Saccharomyces cerevisiae,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61206-1
DOI: 10.1038/s41467-025-61206-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61206-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.