IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010100.html
   My bibliography  Save this article

Enhancing long-term forecasting: Learning from COVID-19 models

Author

Listed:
  • Hazhir Rahmandad
  • Ran Xu
  • Navid Ghaffarzadegan

Abstract

While much effort has gone into building predictive models of the COVID-19 pandemic, some have argued that early exponential growth combined with the stochastic nature of epidemics make the long-term prediction of contagion trajectories impossible. We conduct two complementary studies to assess model features supporting better long-term predictions. First, we leverage the diverse models contributing to the CDC repository of COVID-19 USA death projections to identify factors associated with prediction accuracy across different projection horizons. We find that better long-term predictions correlate with: (1) capturing the physics of transmission (instead of using black-box models); (2) projecting human behavioral reactions to an evolving pandemic; and (3) resetting state variables to account for randomness not captured in the model before starting projection. Second, we introduce a very simple model, SEIRb, that incorporates these features, and few other nuances, offers informative predictions for as far as 20-weeks ahead, with accuracy comparable with the best models in the CDC set. Key to the long-term predictive power of multi-wave COVID-19 trajectories is capturing behavioral responses endogenously: balancing feedbacks where the perceived risk of death continuously changes transmission rates through the adoption and relaxation of various Non-Pharmaceutical Interventions (NPIs).Author summary: Long-term projections of COVID-19 trajectory have been used to inform various policies and decisions such as planning intensive care capacity, selecting clinical trial locations, and deciding on economic policy packages. However, these types of long-term forecasts are challenging as epidemics are complex: they include reinforcing contagion mechanisms that create exponential growth, are moderated by randomness in environmental and social determinants of transmission, and are subject to endogenous human responses to evolving risk perceptions. In this study we take a step towards systematically examining the modeling choices that regulate COVID-19 forecasting accuracy in two complementary studies. First, we leverage the diverse models contributing to the CDC repository of COVID-19 USA death projections to identify factors associated with prediction accuracy across different projection horizons. Second, we design a very simple forecasting model that only incorporates the key features identified in the first study, and show that the long-term prediction accuracy of this model is comparable with the best models in the CDC set. We conclude that forecasting models responding to future epidemics would benefit from starting small: first incorporating key mechanistic features, important behavioral feedbacks, and simple state-resetting approaches and then expanding to capture other features. Our study shows that the key to the long-term predictive power of epidemic models is an endogenous representation of human behavior in interaction with the evolving epidemic.

Suggested Citation

  • Hazhir Rahmandad & Ran Xu & Navid Ghaffarzadegan, 2022. "Enhancing long-term forecasting: Learning from COVID-19 models," PLOS Computational Biology, Public Library of Science, vol. 18(5), pages 1-15, May.
  • Handle: RePEc:plo:pcbi00:1010100
    DOI: 10.1371/journal.pcbi.1010100
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010100
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010100&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.