IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009407.html
   My bibliography  Save this article

Thalamic bursts modulate cortical synchrony locally to switch between states of global functional connectivity in a cognitive task

Author

Listed:
  • Oscar Portoles
  • Manuel Blesa
  • Marieke van Vugt
  • Ming Cao
  • Jelmer P Borst

Abstract

Performing a cognitive task requires going through a sequence of functionally diverse stages. Although it is typically assumed that these stages are characterized by distinct states of cortical synchrony that are triggered by sub-cortical events, little reported evidence supports this hypothesis. To test this hypothesis, we first identified cognitive stages in single-trial MEG data of an associative recognition task, showing with a novel method that each stage begins with local modulations of synchrony followed by a state of directed functional connectivity. Second, we developed the first whole-brain model that can simulate cortical synchrony throughout a task. The model suggests that the observed synchrony is caused by thalamocortical bursts at the onset of each stage, targeted at cortical synapses and interacting with the structural anatomical connectivity. These findings confirm that cognitive stages are defined by distinct states of cortical synchrony and explains the network-level mechanisms necessary for reaching stage-dependent synchrony states.Author summary: A novel machine-learning method was applied to unveil the dynamics of local and cortex-wide neural coordination underlying the fundamental cognitive processes involved in a memory task. To explain how neural activity–and ultimately behavior–was coordinated throughout the task, we developed a whole-brain model that incorporates cognitive mechanisms, anatomy, and neural biophysics. Similar models are regularly used with resting state data, but simulating a cognitive task remained elusive. By using hidden semi-Markov models to divide the task into stages with separate connectivity patterns, we were able to generalize the whole brain model from resting state to cognitive task data. The model showed that sub-cortical pulses at the onset of cognitive processes–as hypothesized by cognitive and neurophysiological theories–were sufficient to switch between the states of neural coordination observed. These findings have implications for understanding goal-directed cognitive processing and the mechanisms needed to reach states of neural coordination.

Suggested Citation

  • Oscar Portoles & Manuel Blesa & Marieke van Vugt & Ming Cao & Jelmer P Borst, 2022. "Thalamic bursts modulate cortical synchrony locally to switch between states of global functional connectivity in a cognitive task," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-20, March.
  • Handle: RePEc:plo:pcbi00:1009407
    DOI: 10.1371/journal.pcbi.1009407
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009407
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009407&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Le-Zhi Wang & Ri-Qi Su & Zi-Gang Huang & Xiao Wang & Wen-Xu Wang & Celso Grebogi & Ying-Cheng Lai, 2016. "A geometrical approach to control and controllability of nonlinear dynamical networks," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    2. Alexander Tselykh & Vladislav Vasilev & Larisa Tselykh & Fernando A. F. Ferreira, 2022. "Influence control method on directed weighted signed graphs with deterministic causality," Annals of Operations Research, Springer, vol. 311(2), pages 1281-1305, April.
    3. Priyan Bhattacharya & Karthik Raman & Arun K Tangirala, 2022. "Discovering adaptation-capable biological network structures using control-theoretic approaches," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-28, January.
    4. Pang, Shao-Peng & Hao, Fei, 2018. "Target control of edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 14-26.
    5. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    6. Henry Cavanagh & Andreas Mosbach & Gabriel Scalliet & Rob Lind & Robert G. Endres, 2021. "Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.