IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008462.html
   My bibliography  Save this article

Biologically-informed neural networks guide mechanistic modeling from sparse experimental data

Author

Listed:
  • John H Lagergren
  • John T Nardini
  • Ruth E Baker
  • Matthew J Simpson
  • Kevin B Flores

Abstract

Biologically-informed neural networks (BINNs), an extension of physics-informed neural networks [1], are introduced and used to discover the underlying dynamics of biological systems from sparse experimental data. In the present work, BINNs are trained in a supervised learning framework to approximate in vitro cell biology assay experiments while respecting a generalized form of the governing reaction-diffusion partial differential equation (PDE). By allowing the diffusion and reaction terms to be multilayer perceptrons (MLPs), the nonlinear forms of these terms can be learned while simultaneously converging to the solution of the governing PDE. Further, the trained MLPs are used to guide the selection of biologically interpretable mechanistic forms of the PDE terms which provides new insights into the biological and physical mechanisms that govern the dynamics of the observed system. The method is evaluated on sparse real-world data from wound healing assays with varying initial cell densities [2].Author summary: In this work we extend equation learning methods to be feasible for biological applications with nonlinear dynamics and where data are often sparse and noisy. Physics-informed neural networks have recently been shown to approximate solutions of PDEs from simulated noisy data while simultaneously optimizing the PDE parameters. However, the success of this method requires the correct specification of the governing PDE, which may not be known in practice. Here, we present an extension of the algorithm that allows neural networks to learn the nonlinear terms of the governing system without the need to specify the mechanistic form of the PDE. Our method is demonstrated on real-world biological data from scratch assay experiments and used to discover a previously unconsidered biological mechanism that describes delayed population response to the scratch.

Suggested Citation

  • John H Lagergren & John T Nardini & Ruth E Baker & Matthew J Simpson & Kevin B Flores, 2020. "Biologically-informed neural networks guide mechanistic modeling from sparse experimental data," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-29, December.
  • Handle: RePEc:plo:pcbi00:1008462
    DOI: 10.1371/journal.pcbi.1008462
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008462
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008462&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Katharina Paulick & Simon Seidel & Christoph Lange & Annina Kemmer & Mariano Nicolas Cruz-Bournazou & André Baier & Daniel Haehn, 2022. "Promoting Sustainability through Next-Generation Biologics Drug Development," Sustainability, MDPI, vol. 14(8), pages 1-31, April.
    3. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. M. Hymavathi & Tarek F. Ibrahim & M. Syed Ali & Gani Stamov & Ivanka Stamova & B. A. Younis & Khalid I. Osman, 2022. "Synchronization of Fractional-Order Neural Networks with Time Delays and Reaction-Diffusion Terms via Pinning Control," Mathematics, MDPI, vol. 10(20), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.