IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007390.html
   My bibliography  Save this article

Sequence specificity despite intrinsic disorder: How a disease-associated Val/Met polymorphism rearranges tertiary interactions in a long disordered protein

Author

Listed:
  • Ruchi Lohia
  • Reza Salari
  • Grace Brannigan

Abstract

The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) in precursor brain-derived neurotrophic factor (BDNF) is one of the earliest SNPs to be associated with neuropsychiatric disorders, and the underlying molecular mechanism is unknown. Here we report on over 250 μs of fully-atomistic, explicit solvent, temperature replica-exchange molecular dynamics (MD) simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence. The simulations were able to correctly reproduce the location of both local and non-local secondary structure changes due to the Val66Met mutation, when compared with NMR spectroscopy. We find that the change in local structure is mediated via entropic and sequence specific effects. We developed a hierarchical sequence-based framework for analysis and conceptualization, which first identifies “blobs” of 4-15 residues representing local globular regions or linkers. We use this framework within a novel test for enrichment of higher-order (tertiary) structure in disordered proteins; the size and shape of each blob is extracted from MD simulation of the real protein (RP), and used to parameterize a self-avoiding heterogenous polymer (SAHP). The SAHP version of the BDNF prodomain suggested a protein segmented into three regions, with a central long, highly disordered polyampholyte linker separating two globular regions. This effective segmentation was also observed in full simulations of the RP, but the Val66Met substitution significantly increased interactions across the linker, as well as the number of participating residues. The Val66Met substitution replaces β-bridging between V66 and V94 (on either side of the linker) with specific side-chain interactions between M66 and M95. The protein backbone in the vicinity of M95 is then free to form β-bridges with residues 31-41 near the N-terminus, which condenses the protein. A significant role for Met/Met interactions is consistent with previously-observed non-local effects of the Val66Met SNP, as well as established interactions between the Met66 sequence and a Met-rich receptor that initiates neuronal growth cone retraction.Author summary: Intrinsically disordered proteins are proteins that have no well-defined structure in at least one functional form. Mutations in one amino acid may still affect their function significantly, especially in subtle ways with cumulative adverse effects on health. Here we report on molecular dynamics simulations of a protein that is critical for neuronal health throughout adulthood (brain-derived neurotrophic factor). We investigate the effects of a mutation carried by 30% of human population, which has been widely studied for its association with aging-related and stress-related disorders, reduced volume of the hippocampus, and variations in episodic memory. We identify a molecular mechanism in which the mutation may change the global conformations of the protein and its ability to bind to receptors.

Suggested Citation

  • Ruchi Lohia & Reza Salari & Grace Brannigan, 2019. "Sequence specificity despite intrinsic disorder: How a disease-associated Val/Met polymorphism rearranges tertiary interactions in a long disordered protein," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-29, October.
  • Handle: RePEc:plo:pcbi00:1007390
    DOI: 10.1371/journal.pcbi.1007390
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007390
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007390&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Knott & Robert B Best, 2012. "A Preformed Binding Interface in the Unbound Ensemble of an Intrinsically Disordered Protein: Evidence from Molecular Simulations," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-10, July.
    2. Agustin Anastasia & Katrin Deinhardt & Moses V. Chao & Nathan E. Will & Krithi Irmady & Francis S. Lee & Barbara L. Hempstead & Clay Bracken, 2013. "Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction," Nature Communications, Nature, vol. 4(1), pages 1-13, December.
    3. Sanne Abeln & Daan Frenkel, 2008. "Disordered Flanks Prevent Peptide Aggregation," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-7, December.
    4. Anita E. Autry & Megumi Adachi & Elena Nosyreva & Elisa S. Na & Maarten F. Los & Peng-fei Cheng & Ege T. Kavalali & Lisa M. Monteggia, 2011. "NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses," Nature, Nature, vol. 475(7354), pages 91-95, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radhika Rawat & Elif Tunc-Ozcan & Tammy L. McGuire & Chian-Yu Peng & John A. Kessler, 2022. "Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jackie Zhu & Elisa Hawkins & Kristin Phillips & Laxmikant S. Deshpande, 2020. "Assessment of Ketamine and its Enantiomers in an Organophosphate-Based Rat Model for Features of Gulf War Illness," IJERPH, MDPI, vol. 17(13), pages 1-16, June.
    3. Tommaso Ianni & Sedona N. Ewbank & Marjorie R. Levinstein & Matine M. Azadian & Reece C. Budinich & Michael Michaelides & Raag D. Airan, 2024. "Sex dependence of opioid-mediated responses to subanesthetic ketamine in rats," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Patrick R. Smith & Sarah Loerch & Nikesh Kunder & Alexander D. Stanowick & Tzu-Fang Lou & Zachary T. Campbell, 2021. "Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.