IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i13p4710-d378438.html
   My bibliography  Save this article

Assessment of Ketamine and its Enantiomers in an Organophosphate-Based Rat Model for Features of Gulf War Illness

Author

Listed:
  • Jackie Zhu

    (Department of Biology, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA)

  • Elisa Hawkins

    (Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA)

  • Kristin Phillips

    (School of Neuroscience, Virginia Tech, Blacksburg, VA 23298, USA)

  • Laxmikant S. Deshpande

    (Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
    Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA)

Abstract

Approximately 33% of U.S. soldiers from the first Gulf War suffer from a multi-system disorder known as the Gulf War Illness (GWI). GW veterans suffer from a cluster of symptoms that prominently include fatigue and can include mood-related symptoms. Compared to traditional antidepressants, ketamine (KET) produces a fast-onset and long-lasting antidepressant response, but assessments of KET for GWI-related depression are lacking. The etiology of GWI is multi-factorial and exposure to organophosphates (OP) during deployment is one of the factors underlying GWI development. Here, male Sprague-Dawley rats were repeatedly exposed to an OP DFP and three months later these rats, when assessed on a battery of rodent behavioral assays, displayed signs consistent with aspects of GWI characteristics. When treated with a sub-anesthetic dose of KET (3, 5, or 10 mg/kg, i.p.), DFP-treated rats exhibited a significant improvement in immobility time, open-arm exploration, and sucrose consumption as early as 1 h and much of these effects persisted at 24-h post-KET injection. KET’s stereoisomers, R -KET and S -KET, also exhibited such effects in DFP rats, with R -KET being the more potent isomer. Our studies provide a starting point for further assessment of KET for GWI depression.

Suggested Citation

  • Jackie Zhu & Elisa Hawkins & Kristin Phillips & Laxmikant S. Deshpande, 2020. "Assessment of Ketamine and its Enantiomers in an Organophosphate-Based Rat Model for Features of Gulf War Illness," IJERPH, MDPI, vol. 17(13), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4710-:d:378438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/13/4710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/13/4710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anita E. Autry & Megumi Adachi & Elena Nosyreva & Elisa S. Na & Maarten F. Los & Peng-fei Cheng & Ege T. Kavalali & Lisa M. Monteggia, 2011. "NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses," Nature, Nature, vol. 475(7354), pages 91-95, July.
    2. Panos Zanos & Ruin Moaddel & Patrick J. Morris & Polymnia Georgiou & Jonathan Fischell & Greg I. Elmer & Manickavasagom Alkondon & Peixiong Yuan & Heather J. Pribut & Nagendra S. Singh & Katina S. S. , 2016. "NMDAR inhibition-independent antidepressant actions of ketamine metabolites," Nature, Nature, vol. 533(7604), pages 481-486, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radhika Rawat & Elif Tunc-Ozcan & Tammy L. McGuire & Chian-Yu Peng & John A. Kessler, 2022. "Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Tommaso Ianni & Sedona N. Ewbank & Marjorie R. Levinstein & Matine M. Azadian & Reece C. Budinich & Michael Michaelides & Raag D. Airan, 2024. "Sex dependence of opioid-mediated responses to subanesthetic ketamine in rats," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Sharvari Shivanekar & Priya Gopalan & Anthony Pizon & Crystal Spotts & Nicolas Cruz & Michael Lightfoot & Rebecca Rohac & Andrew Baumeister & Angela Griffo & Benjamin Panny & Shelly Kucherer & Alex Is, 2022. "A Pilot Study of Ketamine Infusion after Suicide Attempt: New Frontiers in Treating Acute Suicidality in a Real-World Medical Setting," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
    4. Ruchi Lohia & Reza Salari & Grace Brannigan, 2019. "Sequence specificity despite intrinsic disorder: How a disease-associated Val/Met polymorphism rearranges tertiary interactions in a long disordered protein," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-29, October.
    5. Shi-Ge Xue & Jin-Gang He & Ling-Li Lu & Shi-Jie Song & Mei-Mei Chen & Fang Wang & Jian-Guo Chen, 2023. "Enhanced TARP-γ8-PSD-95 coupling in excitatory neurons contributes to the rapid antidepressant-like action of ketamine in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Patrick R. Smith & Sarah Loerch & Nikesh Kunder & Alexander D. Stanowick & Tzu-Fang Lou & Zachary T. Campbell, 2021. "Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    7. Francis Kei Masuda & Emily A. Aery Jones & Yanjun Sun & Lisa M. Giocomo, 2023. "Ketamine evoked disruption of entorhinal and hippocampal spatial maps," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Fangyun Tian & Laura D. Lewis & David W. Zhou & Gustavo A. Balanza & Angelique C. Paulk & Rina Zelmann & Noam Peled & Daniel Soper & Laura A. Santa Cruz Mercado & Robert A. Peterfreund & Linda S. Agli, 2023. "Characterizing brain dynamics during ketamine-induced dissociation and subsequent interactions with propofol using human intracranial neurophysiology," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4710-:d:378438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.