IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003648.html
   My bibliography  Save this article

Place Cell Rate Remapping by CA3 Recurrent Collaterals

Author

Listed:
  • Trygve Solstad
  • Hosam N Yousif
  • Terrence J Sejnowski

Abstract

Episodic-like memory is thought to be supported by attractor dynamics in the hippocampus. A possible neural substrate for this memory mechanism is rate remapping, in which the spatial map of place cells encodes contextual information through firing rate variability. To test whether memories are stored as multimodal attractors in populations of place cells, recent experiments morphed one familiar context into another while observing the responses of CA3 cell ensembles. Average population activity in CA3 was reported to transition gradually rather than abruptly from one familiar context to the next, suggesting a lack of attractive forces associated with the two stored representations. On the other hand, individual CA3 cells showed a mix of gradual and abrupt transitions at different points along the morph sequence, and some displayed hysteresis which is a signature of attractor dynamics. To understand whether these seemingly conflicting results are commensurate with attractor network theory, we developed a neural network model of the CA3 with attractors for both position and discrete contexts. We found that for memories stored in overlapping neural ensembles within a single spatial map, position-dependent context attractors made transitions at different points along the morph sequence. Smooth transition curves arose from averaging across the population, while a heterogeneous set of responses was observed on the single unit level. In contrast, orthogonal memories led to abrupt and coherent transitions on both population and single unit levels as experimentally observed when remapping between two independent spatial maps. Strong recurrent feedback entailed a hysteretic effect on the network which diminished with the amount of overlap in the stored memories. These results suggest that context-dependent memory can be supported by overlapping local attractors within a spatial map of CA3 place cells. Similar mechanisms for context-dependent memory may also be found in other regions of the cerebral cortex.Author Summary: The activity of ‘place cells’ in hippocampal area CA3 systematically changes as a function of the animal's position in an arena as well as contextual variables like the color or shape of enclosing walls. Large changes to the local environment, e.g. moving the animal to a different room, can induce a complete reorganization of place-cell firing locations. Such ‘global remapping’ reveals that memory for different environments is encoded as separate spatial maps. Smaller changes to features within an environment can induce a modulation of place cell firing rates without affecting their firing locations. This kind of ‘rate remapping’ is still poorly understood. In this paper we describe a computational model in which discrete memories for contextual features were stored locally within a spatial map of place cells. This network structure supports retrieval of both positional and contextual information from an arbitrary cue, as required by an episodic memory structure. The activity of the network qualitatively matches empirical data from rate remapping experiments, both on the population level and the level of single place cells. The results support the idea that CA3 rate remapping reflects content-addressable memories stored as multimodal attractor states in the hippocampus.

Suggested Citation

  • Trygve Solstad & Hosam N Yousif & Terrence J Sejnowski, 2014. "Place Cell Rate Remapping by CA3 Recurrent Collaterals," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-10, June.
  • Handle: RePEc:plo:pcbi00:1003648
    DOI: 10.1371/journal.pcbi.1003648
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003648
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003648&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    2. Karel Jezek & Espen J. Henriksen & Alessandro Treves & Edvard I. Moser & May-Britt Moser, 2011. "Theta-paced flickering between place-cell maps in the hippocampus," Nature, Nature, vol. 478(7368), pages 246-249, October.
    3. Brad E. Pfeiffer & David J. Foster, 2013. "Hippocampal place-cell sequences depict future paths to remembered goals," Nature, Nature, vol. 497(7447), pages 74-79, May.
    4. Hanne Stensola & Tor Stensola & Trygve Solstad & Kristian Frøland & May-Britt Moser & Edvard I. Moser, 2012. "The entorhinal grid map is discretized," Nature, Nature, vol. 492(7427), pages 72-78, December.
    5. Milena Raffi & Ralph M Siegel, 2007. "A Functional Architecture of Optic Flow in the Inferior Parietal Lobule of the Behaving Monkey," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-19, February.
    6. Marianne Fyhn & Torkel Hafting & Alessandro Treves & May-Britt Moser & Edvard I. Moser, 2007. "Hippocampal remapping and grid realignment in entorhinal cortex," Nature, Nature, vol. 446(7132), pages 190-194, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Torsten Neher & Amir Hossein Azizi & Sen Cheng, 2017. "From grid cells to place cells with realistic field sizes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-27, July.
    3. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.
    4. Axel Kammerer & Christian Leibold, 2014. "Hippocampal Remapping Is Constrained by Sparseness rather than Capacity," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-12, December.
    5. Benjamin Dunn & Maria Mørreaunet & Yasser Roudi, 2015. "Correlations and Functional Connections in a Population of Grid Cells," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-21, February.
    6. Lajos Vágó & Balázs B Ujfalussy, 2018. "Robust and efficient coding with grid cells," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-28, January.
    7. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. J Matthew Mahoney & Ali S Titiz & Amanda E Hernan & Rod C Scott, 2016. "Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-25, February.
    9. Marta Huelin Gorriz & Masahiro Takigawa & Daniel Bendor, 2023. "The role of experience in prioritizing hippocampal replay," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    11. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    12. Milena Raffi & Aurelio Trofè & Monica Perazzolo & Andrea Meoni & Alessandro Piras, 2021. "Sensory Input Modulates Microsaccades during Heading Perception," IJERPH, MDPI, vol. 18(6), pages 1-17, March.
    13. Alexander Thomas Keinath, 2016. "The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex Are Periodically Organized," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    14. Hong Yu & Xinkuan Xiang & Zongming Chen & Xu Wang & Jiaqi Dai & Xinxin Wang & Pengcheng Huang & Zheng-dong Zhao & Wei L. Shen & Haohong Li, 2021. "Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    15. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Francesco Donnarumma & Domenico Maisto & Giovanni Pezzulo, 2016. "Problem Solving as Probabilistic Inference with Subgoaling: Explaining Human Successes and Pitfalls in the Tower of Hanoi," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-30, April.
    17. Kamiar Rahnama Rad & Arian Maleki, 2020. "A scalable estimate of the out‐of‐sample prediction error via approximate leave‐one‐out cross‐validation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 965-996, September.
    18. Will D Penny & Peter Zeidman & Neil Burgess, 2013. "Forward and Backward Inference in Spatial Cognition," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-22, December.
    19. Lukas Grossberger & Francesco P Battaglia & Martin Vinck, 2018. "Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-34, July.
    20. John Palmer & Adam Keane & Pulin Gong, 2017. "Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.