IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002578.html
   My bibliography  Save this article

Shaping the Dynamics of a Bidirectional Neural Interface

Author

Listed:
  • Alessandro Vato
  • Marianna Semprini
  • Emma Maggiolini
  • Francois D Szymanski
  • Luciano Fadiga
  • Stefano Panzeri
  • Ferdinando A Mussa-Ivaldi

Abstract

Progress in decoding neural signals has enabled the development of interfaces that translate cortical brain activities into commands for operating robotic arms and other devices. The electrical stimulation of sensory areas provides a means to create artificial sensory information about the state of a device. Taken together, neural activity recording and microstimulation techniques allow us to embed a portion of the central nervous system within a closed-loop system, whose behavior emerges from the combined dynamical properties of its neural and artificial components. In this study we asked if it is possible to concurrently regulate this bidirectional brain-machine interaction so as to shape a desired dynamical behavior of the combined system. To this end, we followed a well-known biological pathway. In vertebrates, the communications between brain and limb mechanics are mediated by the spinal cord, which combines brain instructions with sensory information and organizes coordinated patterns of muscle forces driving the limbs along dynamically stable trajectories. We report the creation and testing of the first neural interface that emulates this sensory-motor interaction. The interface organizes a bidirectional communication between sensory and motor areas of the brain of anaesthetized rats and an external dynamical object with programmable properties. The system includes (a) a motor interface decoding signals from a motor cortical area, and (b) a sensory interface encoding the state of the external object into electrical stimuli to a somatosensory area. The interactions between brain activities and the state of the external object generate a family of trajectories converging upon a selected equilibrium point from arbitrary starting locations. Thus, the bidirectional interface establishes the possibility to specify not only a particular movement trajectory but an entire family of motions, which includes the prescribed reactions to unexpected perturbations. Author Summary: Brain-machine interfaces establish new communication channels between the brain and the external world with the goal of restoring sensory and motor functions for people with severe paralysis or sensory impairments. Current methodologies are based on decoding the motor intent from the recorded neural activity and transforming the extracted information into motor commands to control external devices as robotic arms. We developed a novel computational approach, based on the concept of programming dynamical behaviors trough the bi-directional sensory-motor interaction between the brain and the connected external device. This approach is based on the emulation of some control features of a biological interface, the spinal cord. The first prototype of our interface controls the state of motion of a simulated point mass in a viscous medium. The position of the point mass is encoded into a stimulus to the somatosensory cortex of an anesthetized rat. The evoked activity of a population of motor cortical neurons is decoded into a force vector applied to the point mass. The parameters of the encoder and of the decoder are set to approximate a desired force field. In the first test of the interface, we obtained a family of trajectories that converged upon a stable attractor.

Suggested Citation

  • Alessandro Vato & Marianna Semprini & Emma Maggiolini & Francois D Szymanski & Luciano Fadiga & Stefano Panzeri & Ferdinando A Mussa-Ivaldi, 2012. "Shaping the Dynamics of a Bidirectional Neural Interface," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-15, July.
  • Handle: RePEc:plo:pcbi00:1002578
    DOI: 10.1371/journal.pcbi.1002578
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002578
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002578&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johan Wessberg & Christopher R. Stambaugh & Jerald D. Kralik & Pamela D. Beck & Mark Laubach & John K. Chapin & Jung Kim & S. James Biggs & Mandayam A. Srinivasan & Miguel A. L. Nicolelis, 2000. "Real-time prediction of hand trajectory by ensembles of cortical neurons in primates," Nature, Nature, vol. 408(6810), pages 361-365, November.
    2. Sanjiv K. Talwar & Shaohua Xu & Emerson S. Hawley & Shennan A. Weiss & Karen A. Moxon & John K. Chapin, 2002. "Rat navigation guided by remote control," Nature, Nature, vol. 417(6884), pages 37-38, May.
    3. Daniel A. Butts & Chong Weng & Jianzhong Jin & Chun-I Yeh & Nicholas A. Lesica & Jose-Manuel Alonso & Garrett B. Stanley, 2007. "Temporal precision in the neural code and the timescales of natural vision," Nature, Nature, vol. 449(7158), pages 92-95, September.
    4. Joseph E. O’Doherty & Mikhail A. Lebedev & Peter J. Ifft & Katie Z. Zhuang & Solaiman Shokur & Hannes Bleuler & Miguel A. L. Nicolelis, 2011. "Active tactile exploration using a brain–machine–brain interface," Nature, Nature, vol. 479(7372), pages 228-231, November.
    5. Meel Velliste & Sagi Perel & M. Chance Spalding & Andrew S. Whitford & Andrew B. Schwartz, 2008. "Cortical control of a prosthetic arm for self-feeding," Nature, Nature, vol. 453(7198), pages 1098-1101, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryam M Shanechi & Ziv M Williams & Gregory W Wornell & Rollin C Hu & Marissa Powers & Emery N Brown, 2013. "A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    2. Hu Lu & Shengtao Yang & Longnian Lin & Baoming Li & Hui Wei, 2013. "Prediction of Rat Behavior Outcomes in Memory Tasks Using Functional Connections among Neurons," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-11, September.
    3. Zheng Li & Joseph E O'Doherty & Timothy L Hanson & Mikhail A Lebedev & Craig S Henriquez & Miguel A L Nicolelis, 2009. "Unscented Kalman Filter for Brain-Machine Interfaces," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-18, July.
    4. Hong Gi Yeom & June Sic Kim & Chun Kee Chung, 2014. "High-Accuracy Brain-Machine Interfaces Using Feedback Information," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-7, July.
    5. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    6. Linlin Li & Shufang Zhao & Wenhao Ran & Zhexin Li & Yongxu Yan & Bowen Zhong & Zheng Lou & Lili Wang & Guozhen Shen, 2022. "Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Tobias Pistohl & Thomas Sebastian Benedikt Schmidt & Tonio Ball & Andreas Schulze-Bonhage & Ad Aertsen & Carsten Mehring, 2013. "Grasp Detection from Human ECoG during Natural Reach-to-Grasp Movements," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    8. Andrey Eliseyev & Tetiana Aksenova, 2016. "Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    9. Alessandro Vato & Francois D Szymanski & Marianna Semprini & Ferdinando A Mussa-Ivaldi & Stefano Panzeri, 2014. "A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-20, March.
    10. Nuri F Ince & Rahul Gupta & Sami Arica & Ahmed H Tewfik & James Ashe & Giuseppe Pellizzer, 2010. "High Accuracy Decoding of Movement Target Direction in Non-Human Primates Based on Common Spatial Patterns of Local Field Potentials," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-11, December.
    11. Bryce Allen Bagley & Blake Bordelon & Benjamin Moseley & Ralf Wessel, 2020. "Pre-Synaptic Pool Modification (PSPM): A supervised learning procedure for recurrent spiking neural networks," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-25, February.
    12. Shinsuke Koyama & Uri Eden & Emery Brown & Robert Kass, 2010. "Bayesian decoding of neural spike trains," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 37-59, February.
    13. Yasuhiko Nakanishi & Takufumi Yanagisawa & Duk Shin & Ryohei Fukuma & Chao Chen & Hiroyuki Kambara & Natsue Yoshimura & Masayuki Hirata & Toshiki Yoshimine & Yasuharu Koike, 2013. "Prediction of Three-Dimensional Arm Trajectories Based on ECoG Signals Recorded from Human Sensorimotor Cortex," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    14. Omer Hazon & Victor H. Minces & David P. Tomàs & Surya Ganguli & Mark J. Schnitzer & Pablo E. Jercog, 2022. "Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Zane N Aldworth & Alexander G Dimitrov & Graham I Cummins & Tomáš Gedeon & John P Miller, 2011. "Temporal Encoding in a Nervous System," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-19, May.
    16. Tomislav Milekovic & Tonio Ball & Andreas Schulze-Bonhage & Ad Aertsen & Carsten Mehring, 2013. "Detection of Error Related Neuronal Responses Recorded by Electrocorticography in Humans during Continuous Movements," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-20, February.
    17. Sean T Kelly & Jens Kremkow & Jianzhong Jin & Yushi Wang & Qi Wang & Jose-Manuel Alonso & Garrett B Stanley, 2014. "The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature Selectivity," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-13, January.
    18. Burkhart, Michael C., 2019. "A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding," Thesis Commons 4j3fu_v1, Center for Open Science.
    19. Pavlov, A.N. & Grishina, D.S. & Runnova, A.E. & Maksimenko, V.A. & Pavlova, O.N. & Shchukovsky, N.V. & Hramov, A.E. & Kurths, J., 2019. "Recognition of electroencephalographic patterns related to human movements or mental intentions with multiresolution analysis," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 230-235.
    20. Josh Merel & David Carlson & Liam Paninski & John P Cunningham, 2016. "Neuroprosthetic Decoder Training as Imitation Learning," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-24, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.