IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000104.html
   My bibliography  Save this article

Circadian Phase Resetting via Single and Multiple Control Targets

Author

Listed:
  • Neda Bagheri
  • Jörg Stelling
  • Francis J Doyle III

Abstract

Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm) out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness.Author Summary: The robust timing, or phase, of the circadian clock is critical in directing and synchronizing molecular, cellular, and organismal behaviors. The clock's failure to maintain precision and adaption is associated with sleeping disorders, depression, and cancer. To better study and control the timing of circadian rhythms, we make use of systems theoretic tools such as sensitivity analysis and model predictive control (MPC). Sensitivity analysis is used to identify key driving mechanisms without having to fully understand or investigate the detailed mechanistic interconnections of the large complex circadian network. Contrary to intuition, sensitivity analysis of the circadian model highlights several non-photic control inputs (such as transcriptional regulation) that outperform light-based circadian phase resetting – light is known to accelerate protein degradation. Aside from targeting individual parameters as control inputs, our methods identify combinations of control targets that may further the efficiency of entrainment. We compare the phase resetting performance of our MPC algorithm among cases involving individual and multiple simultaneous control targets (in wild-type simulations). We then tailor the algorithm to correct continuously the phase mismatch that occurs in short and long period mutant phenotypes. Through use of the presented tools, our algorithm is robust in the presence of model mismatch and outperforms the natural in silico sun-cycle–based phase recovery strategy by nearly 3-fold.

Suggested Citation

  • Neda Bagheri & Jörg Stelling & Francis J Doyle III, 2008. "Circadian Phase Resetting via Single and Multiple Control Targets," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-10, July.
  • Handle: RePEc:plo:pcbi00:1000104
    DOI: 10.1371/journal.pcbi.1000104
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000104
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000104&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. O. Slaby & S. Sager & O. S. Shaik & U. Kummer & D. Lebiedz, 2007. "Optimal control of self-organized dynamics in cellular signal transduction," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 13(5), pages 487-502, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lindsey S Brown & Francis J Doyle III, 2020. "A dual-feedback loop model of the mammalian circadian clock for multi-input control of circadian phase," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-25, November.
    2. Kirill Serkh & Daniel B Forger, 2014. "Optimal Schedules of Light Exposure for Rapidly Correcting Circadian Misalignment," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bersani, Alberto Maria & Carlini, Elisabetta & Lanucara, Piero & Rorro, Marco & Ruggiero, Vittorio, 2010. "Application of Optimal Control techniques and Advanced Computing to the study of enzyme kinetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 705-716.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.