Author
Listed:
- Gaurav Baruah
- Meike J Wittmann
Abstract
Mutualistic ecological networks can suddenly transition to undesirable states due to small changes in environmental conditions. Recovering from such a collapse can be difficult as restoring the original environmental conditions may be infeasible. Additionally, such networks can also exhibit a phenomenon known as hysteresis, whereby the system could exhibit multiple states under the same environmental conditions, implying that ecological networks may not recover. Here, we attempted to revive collapsed mutualistic networks to a high-functioning state from a single species, using concepts from signal propagation theory and an eco-evolutionary model based on network structures of 115 empirical plant–pollinator networks. We found that restoring the environmental conditions rarely aided in recovery of collapsed networks, but a positive relationship between recovering pollinator density and network nestedness emerged, which was qualitatively supported by empirical plant–pollinator restoration data. In contrast, network resurrection from a collapsed state in undesirable environmental conditions where restoration has minimal impacts could be readily achieved by perturbing a single species or a few species that control the response of the dynamical networks. Additionally, nestedness in networks and a moderate amount of trait variation could aid in the revival of networks even in undesirable environmental conditions. Our work suggests that focus should be applied to a few species whose dynamics could be steered to resurrect entire networks from a collapsed state and that network architecture could play a crucial role in reviving collapsed plant–pollinator networks.How can we revive a collapsed mutualistic ecological network? This study uses concepts from signal propagation theory and an eco-evolutionary model based on network structures of 115 empirical plant-pollinator networks to reveal that effort should be focused on one or a few key species.
Suggested Citation
Gaurav Baruah & Meike J Wittmann, 2024.
"Reviving collapsed plant–pollinator networks from a single species,"
PLOS Biology, Public Library of Science, vol. 22(10), pages 1-32, October.
Handle:
RePEc:plo:pbio00:3002826
DOI: 10.1371/journal.pbio.3002826
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3002826. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.