IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3002436.html
   My bibliography  Save this article

Eukaryotic CD-NTase, STING, and viperin proteins evolved via domain shuffling, horizontal transfer, and ancient inheritance from prokaryotes

Author

Listed:
  • Edward M Culbertson
  • Tera C Levin

Abstract

Animals use a variety of cell-autonomous innate immune proteins to detect viral infections and prevent replication. Recent studies have discovered that a subset of mammalian antiviral proteins have homology to antiphage defense proteins in bacteria, implying that there are aspects of innate immunity that are shared across the Tree of Life. While the majority of these studies have focused on characterizing the diversity and biochemical functions of the bacterial proteins, the evolutionary relationships between animal and bacterial proteins are less clear. This ambiguity is partly due to the long evolutionary distances separating animal and bacterial proteins, which obscures their relationships. Here, we tackle this problem for 3 innate immune families (CD-NTases [including cGAS], STINGs, and viperins) by deeply sampling protein diversity across eukaryotes. We find that viperins and OAS family CD-NTases are ancient immune proteins, likely inherited since the earliest eukaryotes first arose. In contrast, we find other immune proteins that were acquired via at least 4 independent events of horizontal gene transfer (HGT) from bacteria. Two of these events allowed algae to acquire new bacterial viperins, while 2 more HGT events gave rise to distinct superfamilies of eukaryotic CD-NTases: the cGLR superfamily (containing cGAS) that has since diversified via a series of animal-specific duplications and a previously undefined eSMODS superfamily, which more closely resembles bacterial CD-NTases. Finally, we found that cGAS and STING proteins have substantially different histories, with STING protein domains undergoing convergent domain shuffling in bacteria and eukaryotes. Overall, our findings paint a picture of eukaryotic innate immunity as highly dynamic, where eukaryotes build upon their ancient antiviral repertoires through the reuse of protein domains and by repeatedly sampling a rich reservoir of bacterial antiphage genes.How and when did our innate immune systems first evolve? This study analyses diverse eukaryotes, uncovering the evolutionary origins of three families of antiviral proteins: CD-NTases (including cGAS), STINGs and Viperins; each reveals a different story connecting animal and bacterial immunity.

Suggested Citation

  • Edward M Culbertson & Tera C Levin, 2023. "Eukaryotic CD-NTase, STING, and viperin proteins evolved via domain shuffling, horizontal transfer, and ancient inheritance from prokaryotes," PLOS Biology, Public Library of Science, vol. 21(12), pages 1-26, December.
  • Handle: RePEc:plo:pbio00:3002436
    DOI: 10.1371/journal.pbio.3002436
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002436
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3002436&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3002436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroki Ishikawa & Glen N. Barber, 2008. "Erratum: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling," Nature, Nature, vol. 456(7219), pages 274-274, November.
    2. Hiroki Ishikawa & Glen N. Barber, 2008. "STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling," Nature, Nature, vol. 455(7213), pages 674-678, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Liu & Xia Bu & Chen Chu & Xiaoming Dai & John M. Asara & Piotr Sicinski & Gordon J. Freeman & Wenyi Wei, 2023. "PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Mutian Jia & Li Chai & Jie Wang & Mengge Wang & Danhui Qin & Hui Song & Yue Fu & Chunyuan Zhao & Chengjiang Gao & Jihui Jia & Wei Zhao, 2024. "S-nitrosothiol homeostasis maintained by ADH5 facilitates STING-dependent host defense against pathogens," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Alex J. Pollock & Shivam A. Zaver & Joshua J. Woodward, 2020. "A STING-based biosensor affords broad cyclic dinucleotide detection within single living eukaryotic cells," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Maximilian Hirschenberger & Alice Lepelley & Ulrich Rupp & Susanne Klute & Victoria Hunszinger & Lennart Koepke & Veronika Merold & Blaise Didry-Barca & Fanny Wondany & Tim Bergner & Tatiana Moreau & , 2023. "ARF1 prevents aberrant type I interferon induction by regulating STING activation and recycling," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Rana Falahat & Anders Berglund & Patricio Perez-Villarroel & Ryan M. Putney & Imene Hamaidi & Sungjune Kim & Shari Pilon-Thomas & Glen N. Barber & James J. Mulé, 2023. "Epigenetic state determines the in vivo efficacy of STING agonist therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Xudong Chen & Min Xie & Sensen Zhang & Marta Monguió-Tortajada & Jian Yin & Chang Liu & Youqi Zhang & Maeva Delacrétaz & Mingyue Song & Yixue Wang & Lin Dong & Qiang Ding & Boda Zhou & Xiaolin Tian & , 2023. "Structural basis for recruitment of TASL by SLC15A4 in human endolysosomal TLR signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Mutian Jia & Yuanyuan Wang & Jie Wang & Danhui Qin & Mengge Wang & Li Chai & Yue Fu & Chunyuan Zhao & Chengjiang Gao & Jihui Jia & Wei Zhao, 2023. "Myristic acid as a checkpoint to regulate STING-dependent autophagy and interferon responses by promoting N-myristoylation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Haruka Kemmoku & Kanoko Takahashi & Kojiro Mukai & Toshiki Mori & Koichiro M. Hirosawa & Fumika Kiku & Yasunori Uchida & Yoshihiko Kuchitsu & Yu Nishioka & Masaaki Sawa & Takuma Kishimoto & Kazuma Tan, 2024. "Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Tianyang Zhao & Kuipei Jin & Xiaodong Wang & Xiong Su & Youjun Wang & Mingming Gao & Wen Luo & Hongyuan Yang & Zhongzhou Yang, 2025. "GPAT4 sustains endoplasmic reticulum homeostasis in endocardial cells and safeguards heart development," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    11. Shirin Fatma & Arpita Chakravarti & Xuankun Zeng & Raven H. Huang, 2021. "Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Ugur Uslu & Lijun Sun & Sofia Castelli & Amanda V. Finck & Charles-Antoine Assenmacher & Regina M. Young & Zhijian J. Chen & Carl H. June, 2024. "The STING agonist IMSA101 enhances chimeric antigen receptor T cell function by inducing IL-18 secretion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Yongfang Lin & Jing Yang & Qili Yang & Sha Zeng & Jiayu Zhang & Yuanxiang Zhu & Yuxin Tong & Lin Li & Weiqi Tan & Dahua Chen & Qinmiao Sun, 2023. "PTK2B promotes TBK1 and STING oligomerization and enhances the STING-TBK1 signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Yaling Dou & Rui Chen & Siyao Liu & Yi-Tsang Lee & Ji Jing & Xiaoxuan Liu & Yuepeng Ke & Rui Wang & Yubin Zhou & Yun Huang, 2023. "Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Anant Gharpure & Ariana Sulpizio & Johannes R. Loeffler & Monica L. Fernández-Quintero & Andy S. Tran & Luke L. Lairson & Andrew B. Ward, 2025. "Distinct oligomeric assemblies of STING induced by non-nucleotide agonists," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    16. Wei-Wei Luo & Zhen Tong & Pan Cao & Fu-Bing Wang & Ying Liu & Zhou-Qin Zheng & Su-Yun Wang & Shu Li & Yan-Yi Wang, 2022. "Transcription-independent regulation of STING activation and innate immune responses by IRF8 in monocytes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Tian-Chen Xiong & Ming-Cong Wei & Fang-Xu Li & Miao Shi & Hu Gan & Zhen Tang & Hong-Peng Dong & Tianzi Liuyu & Pu Gao & Bo Zhong & Zhi-Dong Zhang & Dandan Lin, 2022. "The E3 ubiquitin ligase ARIH1 promotes antiviral immunity and autoimmunity by inducing mono-ISGylation and oligomerization of cGAS," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Matteo Gentili & Bingxu Liu & Malvina Papanastasiou & Deborah Dele-Oni & Marc A. Schwartz & Rebecca J. Carlson & Aziz M. Al’Khafaji & Karsten Krug & Adam Brown & John G. Doench & Steven A. Carr & Nir , 2023. "ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    19. Xiaoquan Wang & Youqiao Wang & Anqi Cao & Qinhong Luo & Daoyuan Chen & Weiqi Zhao & Jun Xu & Qinkai Li & Xianzhang Bu & Junmin Quan, 2023. "Development of cyclopeptide inhibitors of cGAS targeting protein-DNA interaction and phase separation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3002436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.