IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3002332.html
   My bibliography  Save this article

Independent insulin signaling modulators govern hot avoidance under different feeding states

Author

Listed:
  • Meng-Hsuan Chiang
  • Yu-Chun Lin
  • Sheng-Fu Chen
  • Peng-Shiuan Lee
  • Tsai-Feng Fu
  • Tony Wu
  • Chia-Lin Wu

Abstract

Thermosensation is critical for the survival of animals. However, mechanisms through which nutritional status modulates thermosensation remain unclear. Herein, we showed that hungry Drosophila exhibit a strong hot avoidance behavior (HAB) compared to food-sated flies. We identified that hot stimulus increases the activity of α′β′ mushroom body neurons (MBns), with weak activity in the sated state and strong activity in the hungry state. Furthermore, we showed that α′β′ MBn receives the same level of hot input from the mALT projection neurons via cholinergic transmission in sated and hungry states. Differences in α′β′ MBn activity between food-sated and hungry flies following heat stimuli are regulated by distinct Drosophila insulin-like peptides (Dilps). Dilp2 is secreted by insulin-producing cells (IPCs) and regulates HAB during satiety, whereas Dilp6 is secreted by the fat body and regulates HAB during the hungry state. We observed that Dilp2 induces PI3K/AKT signaling, whereas Dilp6 induces Ras/ERK signaling in α′β′ MBn to regulate HAB in different feeding conditions. Finally, we showed that the 2 α′β′-related MB output neurons (MBONs), MBON-α′3 and MBON-β′1, are necessary for the output of integrated hot avoidance information from α′β′ MBn. Our results demonstrate the presence of dual insulin modulation pathways in α′β′ MBn, which are important for suitable behavioral responses in Drosophila during thermoregulation under different feeding states.Thermosensation is critical for the survival of animals, but the mechanisms by which nutritional status modulates thermosensation remain unclear. Behavioral and live brain imaging studies reveal why food-sated fruit flies prefer to stay at relatively higher temperatures compared to hungry flies.

Suggested Citation

  • Meng-Hsuan Chiang & Yu-Chun Lin & Sheng-Fu Chen & Peng-Shiuan Lee & Tsai-Feng Fu & Tony Wu & Chia-Lin Wu, 2023. "Independent insulin signaling modulators govern hot avoidance under different feeding states," PLOS Biology, Public Library of Science, vol. 21(10), pages 1-31, October.
  • Handle: RePEc:plo:pbio00:3002332
    DOI: 10.1371/journal.pbio.3002332
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002332
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3002332&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3002332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alan R. Saltiel & C. Ronald Kahn, 2001. "Insulin signalling and the regulation of glucose and lipid metabolism," Nature, Nature, vol. 414(6865), pages 799-806, December.
    2. Dominic D. Frank & Genevieve C. Jouandet & Patrick J. Kearney & Lindsey J. Macpherson & Marco Gallio, 2015. "Temperature representation in the Drosophila brain," Nature, Nature, vol. 519(7543), pages 358-361, March.
    3. Fumika N. Hamada & Mark Rosenzweig & Kyeongjin Kang & Stefan R. Pulver & Alfredo Ghezzi & Timothy J. Jegla & Paul A. Garrity, 2008. "An internal thermal sensor controlling temperature preference in Drosophila," Nature, Nature, vol. 454(7201), pages 217-220, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genevieve C. Jouandet & Michael H. Alpert & José Miguel Simões & Richard Suhendra & Dominic D. Frank & Joshua I. Levy & Alessia Para & William L. Kath & Marco Gallio, 2023. "Rapid threat assessment in the Drosophila thermosensory system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Fang Wang & Linfeng Lei & Zhaobin Wang & Yulong Yin & Huansheng Yang & Zhe Yang & Jiashun Chen, 2022. "Differentially expressed genes in the longissimus dorsi muscle between the Chinese indigenous Ningxiang pig and Large White breed using RNA sequencing," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 67(11), pages 442-453.
    3. Julian Krauskopf & Theo M de Kok & Shelli J Schomaker & Mark Gosink & Deborah A Burt & Patricia Chandler & Roscoe L Warner & Kent J Johnson & Florian Caiment & Jos C Kleinjans & Jiri Aubrecht, 2017. "Serum microRNA signatures as "liquid biopsies" for interrogating hepatotoxic mechanisms and liver pathogenesis in human," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    4. Cemal Erdem & Sean M. Gross & Laura M. Heiser & Marc R. Birtwistle, 2023. "MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Sok Kuan Wong & Kok-Yong Chin & Farihah Hj Suhaimi & Fairus Ahmad & Soelaiman Ima-Nirwana, 2018. "The Effects of Vitamin E from Elaeis guineensis (Oil Palm) in a Rat Model of Bone Loss Due to Metabolic Syndrome," IJERPH, MDPI, vol. 15(9), pages 1-12, August.
    6. Yafei Yuan & Fang Kong & Hanwen Xu & Angqi Zhu & Nieng Yan & Chuangye Yan, 2022. "Cryo-EM structure of human glucose transporter GLUT4," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Junjun Gao & Song Zhang & Pan Deng & Zhigang Wu & Bruno Lemaitre & Zongzhao Zhai & Zheng Guo, 2024. "Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    8. Yan-Ping Zhang & Wen-Hong Zhang & Pan Zhang & Qi Li & Yue Sun & Jia-Wen Wang & Shaobing O. Zhang & Tao Cai & Cheng Zhan & Meng-Qiu Dong, 2022. "Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Eunyoung Kim & Jiamei Cui & Inhae Kang & Guiguo Zhang & Yunkyoung Lee, 2021. "Potential Antidiabetic Effects of Seaweed Extracts by Upregulating Glucose Utilization and Alleviating Inflammation in C2C12 Myotubes," IJERPH, MDPI, vol. 18(3), pages 1-13, February.
    10. Hui Xia & Charlotte Scholtes & Catherine R. Dufour & Carlo Ouellet & Majid Ghahremani & Vincent Giguère, 2022. "Insulin action and resistance are dependent on a GSK3β-FBXW7-ERRα transcriptional axis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Lan Pang & Zhiguo Liu & Jiani Chen & Zhi Dong & Sicong Zhou & Qichao Zhang & Yueqi Lu & Yifeng Sheng & Xuexin Chen & Jianhua Huang, 2022. "Search performance and octopamine neuronal signaling mediate parasitoid induced changes in Drosophila oviposition behavior," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Gunnar Cedersund & Jacob Roll & Erik Ulfhielm & Anna Danielsson & Henrik Tidefelt & Peter Strålfors, 2008. "Model-Based Hypothesis Testing of Key Mechanisms in Initial Phase of Insulin Signaling," PLOS Computational Biology, Public Library of Science, vol. 4(6), pages 1-10, June.
    13. Chen Zhang & Anmo J. Kim & Crisalesandra Rivera-Perez & Fernando G. Noriega & Young-Joon Kim, 2022. "The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Nicholas S. Kirk & Qi Chen & Yingzhe Ginger Wu & Anastasia L. Asante & Haitao Hu & Juan F. Espinosa & Francisco Martínez-Olid & Mai B. Margetts & Faiz A. Mohammed & Vladislav V. Kiselyov & David G. Ba, 2022. "Activation of the human insulin receptor by non-insulin-related peptides," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Kit D. Longden & Edward M. Rogers & Aljoscha Nern & Heather Dionne & Michael B. Reiser, 2023. "Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    16. Mohd Zamri Bin Haji Ismail & Matt D Hodges & Michael Boylan & Rajesh Achall & Alan Shirras & Susan J Broughton, 2015. "The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-21, May.
    17. Di Peng & Liubin Zheng & Dan Liu & Cheng Han & Xin Wang & Yan Yang & Li Song & Miaoying Zhao & Yanfeng Wei & Jiayi Li & Xiaoxue Ye & Yuxiang Wei & Zihao Feng & Xinhe Huang & Miaomiao Chen & Yujie Gou , 2024. "Large-language models facilitate discovery of the molecular signatures regulating sleep and activity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Olga Kubrak & Takashi Koyama & Nadja Ahrentløv & Line Jensen & Alina Malita & Muhammad T. Naseem & Mette Lassen & Stanislav Nagy & Michael J. Texada & Kenneth V. Halberg & Kim Rewitz, 2022. "The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Clara Dreyling & Martin Hasselmann, 2022. "The impact of dietary calcium and phosphorus on mitochondrial-linked gene expression in five tissues of laying hens," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-17, June.
    20. Kaoru Ohashi & Hisako Komada & Shinsuke Uda & Hiroyuki Kubota & Toshinao Iwaki & Hiroki Fukuzawa & Yasunori Komori & Masashi Fujii & Yu Toyoshima & Kazuhiko Sakaguchi & Wataru Ogawa & Shinya Kuroda, 2015. "Glucose Homeostatic Law: Insulin Clearance Predicts the Progression of Glucose Intolerance in Humans," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3002332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.