IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3001866.html
   My bibliography  Save this article

Attention is required for canonical brain signature of prediction error despite early encoding of the stimuli

Author

Listed:
  • Alie G Male
  • Robert P O’Shea

Abstract

Prediction error is a basic component of predictive-coding theory of brain processing. According to the theory, each stage of brain processing of sensory information generates a model of the current sensory input; subsequent input is compared against the model and only if there is a mismatch, a prediction error, is further processing performed. Recently, Smout and colleagues found that a signature of prediction error, the visual (v) mismatch negativity (MMN), for a fundamental property of visual input—its orientation—was absent without endogenous attention on the stimuli. This is remarkable because the weight of evidence for MMNs from audition and vision is that they occur without endogenous attention. To resolve this discrepancy, we conducted an experiment addressing 2 alternative explanations for Smout and colleagues’ finding: that it was from a lack of reproducibility or that participants’ visual systems did not encode the stimuli when attention was on something else. We conducted a similar experiment to that of Smout and colleagues. We showed 21 participants sequences of identically oriented Gabor patches, standards, and, unpredictably, otherwise identical, Gabor patches differing in orientation by ±15°, ±30°, and ±60°, deviants. To test whether participants encoded the orientation of the standards, we varied the number of standards preceding a deviant, allowing us to search for a decrease in activity with the number of repetitions of standards—repetition suppression. We diverted participants’ attention from the oriented stimuli with a central, letter-detection task. We reproduced Smout and colleagues’ finding of no vMMN without endogenous attention, strengthening their finding. We found that our participants showed repetition suppression: They did encode the stimuli preattentively. We also found early processing of deviants. We discuss various explanations why the earlier processing did not extend into the vMMN time window, including low precision of prediction.Building on a previous PLOS Biology manuscript, this update article provides new evidence that canonical brain signatures of prediction error are only generated in the presence of attention to the visual stimuli, despite the fact that early brain encoding of the stimuli can be observed.

Suggested Citation

  • Alie G Male & Robert P O’Shea, 2023. "Attention is required for canonical brain signature of prediction error despite early encoding of the stimuli," PLOS Biology, Public Library of Science, vol. 21(6), pages 1-23, June.
  • Handle: RePEc:plo:pbio00:3001866
    DOI: 10.1371/journal.pbio.3001866
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001866
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3001866&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3001866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cooper A Smout & Matthew F Tang & Marta I Garrido & Jason B Mattingley, 2019. "Attention promotes the neural encoding of prediction errors," PLOS Biology, Public Library of Science, vol. 17(2), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew F. Tang & Ehsan Kheradpezhouh & Conrad C. Y. Lee & J. Edwin Dickinson & Jason B. Mattingley & Ehsan Arabzadeh, 2023. "Expectation violations enhance neuronal encoding of sensory information in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3001866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.