IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/2006643.html
   My bibliography  Save this article

Large-scale investigation of the reasons why potentially important genes are ignored

Author

Listed:
  • Thomas Stoeger
  • Martin Gerlach
  • Richard I Morimoto
  • Luís A Nunes Amaral

Abstract

Biomedical research has been previously reported to primarily focus on a minority of all known genes. Here, we demonstrate that these differences in attention can be explained, to a large extent, exclusively from a small set of identifiable chemical, physical, and biological properties of genes. Together with knowledge about homologous genes from model organisms, these features allow us to accurately predict the number of publications on individual human genes, the year of their first report, the levels of funding awarded by the National Institutes of Health (NIH), and the development of drugs against disease-associated genes. By explicitly identifying the reasons for gene-specific bias and performing a meta-analysis of existing computational and experimental knowledge bases, we describe gene-specific strategies for the identification of important but hitherto ignored genes that can open novel directions for future investigation.Author summary: Biomedical research is one of the largest areas of present-day science and embeds the hope and potential to improve the lives of the general public. In order to understand how individual scientists choose individual research questions, we study why certain genes are well studied but others are not. While it has been previously observed that most research on human genes only concentrates on approximately 2,000 of the 19,000 genes of the human genome, the reasons for this ignorance are largely unknown. We systematically test explanations for this observation by compiling an extensive resource that characterizes biomedical research, including but not limited to hundreds of chemical and biological properties of gene-encoded proteins, and the published scientific literature on individual genes. Using machine learning methods, we can predict the number of publications on individual genes, the year of the first publication about them, the extent of funding by the National Institutes of Health, and the existence of related medical drugs. We find that biomedical research is primarily guided by a handful of generic chemical and biological characteristics of genes, which facilitated experimentation during the 1980s and 1990s, rather than the physiological importance of individual genes or their relevance to human disease.

Suggested Citation

  • Thomas Stoeger & Martin Gerlach & Richard I Morimoto & Luís A Nunes Amaral, 2018. "Large-scale investigation of the reasons why potentially important genes are ignored," PLOS Biology, Public Library of Science, vol. 16(9), pages 1-25, September.
  • Handle: RePEc:plo:pbio00:2006643
    DOI: 10.1371/journal.pbio.2006643
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006643
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2006643&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.2006643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Monkol Lek & Konrad J. Karczewski & Eric V. Minikel & Kaitlin E. Samocha & Eric Banks & Timothy Fennell & Anne H. O’Donnell-Luria & James S. Ware & Andrew J. Hill & Beryl B. Cummings & Taru Tukiainen , 2016. "Analysis of protein-coding genetic variation in 60,706 humans," Nature, Nature, vol. 536(7616), pages 285-291, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heng Du & Lei Zhou & Zhen Liu & Yue Zhuo & Meilin Zhang & Qianqian Huang & Shiyu Lu & Kai Xing & Li Jiang & Jian-Feng Liu, 2024. "The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Gökberk Alagöz & Else Eising & Yasmina Mekki & Giacomo Bignardi & Pierre Fontanillas & Michel G. Nivard & Michelle Luciano & Nancy J. Cox & Simon E. Fisher & Reyna L. Gordon, 2025. "The shared genetic architecture and evolution of human language and musical rhythm," Nature Human Behaviour, Nature, vol. 9(2), pages 376-390, February.
    3. Jujiao Kang & Yue-Ting Deng & Bang-Sheng Wu & Wei-Shi Liu & Ze-Yu Li & Shitong Xiang & Liu Yang & Jia You & Xiaohong Gong & Tianye Jia & Jin-Tai Yu & Wei Cheng & Jianfeng Feng, 2024. "Whole exome sequencing analysis identifies genes for alcohol consumption," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Kian Hong Kock & Patrick K. Kimes & Stephen S. Gisselbrecht & Sachi Inukai & Sabrina K. Phanor & James T. Anderson & Gayatri Ramakrishnan & Colin H. Lipper & Dongyuan Song & Jesse V. Kurland & Julia M, 2024. "DNA binding analysis of rare variants in homeodomains reveals homeodomain specificity-determining residues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Suganth Suppiah & Sheila Mansouri & Yasin Mamatjan & Jeffrey C. Liu & Minu M. Bhunia & Vikas Patil & Prisni Rath & Bharati Mehani & Pardeep Heir & Severa Bunda & German L. Velez-Reyes & Olivia Singh &, 2023. "Multiplatform molecular profiling uncovers two subgroups of malignant peripheral nerve sheath tumors with distinct therapeutic vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Eun Seop Seo & Ji Won Lee & Jinyeong Lim & Sunghwan Shin & Hee Won Cho & Hee Young Ju & Keon Hee Yoo & Ki Woong Sung & Woong-Yang Park, 2024. "Germline functional variants contribute to somatic mutation and outcomes in neuroblastoma," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Pei-Kuan Cong & Wei-Yang Bai & Jin-Chen Li & Meng-Yuan Yang & Saber Khederzadeh & Si-Rui Gai & Nan Li & Yu-Heng Liu & Shi-Hui Yu & Wei-Wei Zhao & Jun-Quan Liu & Yi Sun & Xiao-Wei Zhu & Pian-Pian Zhao , 2022. "Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Iker Núñez-Carpintero & Maria Rigau & Mattia Bosio & Emily O’Connor & Sally Spendiff & Yoshiteru Azuma & Ana Topf & Rachel Thompson & Peter A. C. ’t Hoen & Teodora Chamova & Ivailo Tournev & Velina Gu, 2024. "Rare disease research workflow using multilayer networks elucidates the molecular determinants of severity in Congenital Myasthenic Syndromes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Rotem Katzir & Noam Rudberg & Keren Yizhak, 2022. "Estimating tumor mutational burden from RNA-sequencing without a matched-normal sample," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Birgit Burkhardt & Ulf Michgehl & Jonas Rohde & Tabea Erdmann & Philipp Berning & Katrin Reutter & Marius Rohde & Arndt Borkhardt & Thomas Burmeister & Sandeep Dave & Alexandar Tzankov & Martin Dugas , 2022. "Clinical relevance of molecular characteristics in Burkitt lymphoma differs according to age," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Farshad Farshidfar & Kahn Rhrissorrakrai & Chaya Levovitz & Cong Peng & James Knight & Antonella Bacchiocchi & Juan Su & Mingzhu Yin & Mario Sznol & Stephan Ariyan & James Clune & Kelly Olino & Laxmi , 2022. "Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Maria Stahl Madsen & Marjoleine F. Broekema & Martin Rønn Madsen & Arjen Koppen & Anouska Borgman & Cathrin Gräwe & Elisabeth G. K. Thomsen & Denise Westland & Mariette E. G. Kranendonk & Marian Groot, 2022. "PPARγ lipodystrophy mutants reveal intermolecular interactions required for enhancer activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Ricky Lali & Michael Chong & Arghavan Omidi & Pedrum Mohammadi-Shemirani & Ann Le & Edward Cui & Guillaume Paré, 2021. "Calibrated rare variant genetic risk scores for complex disease prediction using large exome sequence repositories," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    15. Mark W. Youngblood & Zeynep Erson-Omay & Chang Li & Hinda Najem & Süleyman Coșkun & Evgeniya Tyrtova & Julio D. Montejo & Danielle F. Miyagishima & Tanyeri Barak & Sayoko Nishimura & Akdes Serin Harma, 2023. "Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Anna Worthmann & Julius Ridder & Sharlaine Y. L. Piel & Ioannis Evangelakos & Melina Musfeldt & Hannah Voß & Marie O’Farrell & Alexander W. Fischer & Sangeeta Adak & Monica Sundd & Hasibullah Siffeti , 2024. "Fatty acid synthesis suppresses dietary polyunsaturated fatty acid use," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Tetsuo Shoda & Kenneth M. Kaufman & Ting Wen & Julie M. Caldwell & Garrett A. Osswald & Pathre Purnima & Nives Zimmermann & Margaret H. Collins & Kira Rehn & Heather Foote & Michael D. Eby & Wenying Z, 2021. "Desmoplakin and periplakin genetically and functionally contribute to eosinophilic esophagitis," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    18. Carlos Eduardo G Amorim & Ziyue Gao & Zachary Baker & José Francisco Diesel & Yuval B Simons & Imran S Haque & Joseph Pickrell & Molly Przeworski, 2017. "The population genetics of human disease: The case of recessive, lethal mutations," PLOS Genetics, Public Library of Science, vol. 13(9), pages 1-23, September.
    19. James T. Topham & Erica S. Tsang & Joanna M. Karasinska & Andrew Metcalfe & Hassan Ali & Steve E. Kalloger & Veronika Csizmok & Laura M. Williamson & Emma Titmuss & Karina Nielsen & Gian Luca Negri & , 2022. "Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Sophie A. Riesmeijer & Zoha Kamali & Michael Ng & Dmitriy Drichel & Bram Piersma & Kerstin Becker & Thomas B. Layton & Jagdeep Nanchahal & Michael Nothnagel & Ahmad Vaez & Hans Christian Hennies & Pau, 2024. "A genome-wide association meta-analysis implicates Hedgehog and Notch signaling in Dupuytren’s disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2006643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.