IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/2003787.html
   My bibliography  Save this article

The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users

Author

Listed:
  • Serafeim Perdikis
  • Luca Tonin
  • Sareh Saeedi
  • Christoph Schneider
  • José del R Millán

Abstract

This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain–computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI–user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface—application, BCI output, and electroencephalography (EEG) neuroimaging—with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.Author summary: Noninvasive brain–computer interface (BCI) based on imagined movements can restore functions lost to disability by enabling spontaneous, direct brain control of external devices without risks associated with surgical implantation of neural interfaces. We hypothesized that, contrary to the popular trend of focusing on the machine learning aspects of BCI training, a comprehensive mutual learning methodology could strongly promote users’ acquisition of BCI skills and lead to a system able to succeed in real-world scenarios such as the Cybathlon event, the first international competition for disabled pilots in control of assistive technology. Two severely impaired participants with chronic spinal cord injury (SCI) were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The evolution of the training process, including competition outcomes (gold medal, tournament record), substantiates the effectiveness of this type of training. Most importantly, the present study provides multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface—application, BCI output, and electroencephalography—with two end-users, longitudinal evaluation, and, importantly, under real-world and even adverse conditions.

Suggested Citation

  • Serafeim Perdikis & Luca Tonin & Sareh Saeedi & Christoph Schneider & José del R Millán, 2018. "The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users," PLOS Biology, Public Library of Science, vol. 16(5), pages 1-28, May.
  • Handle: RePEc:plo:pbio00:2003787
    DOI: 10.1371/journal.pbio.2003787
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003787
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2003787&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.2003787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2003787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.