IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1001985.html
   My bibliography  Save this article

PI3K Signaling and Stat92E Converge to Modulate Glial Responsiveness to Axonal Injury

Author

Listed:
  • Johnna Doherty
  • Amy E Sheehan
  • Rachel Bradshaw
  • A Nicole Fox
  • Tsai-Yi Lu
  • Marc R Freeman

Abstract

Activation of glial cells following axon injury is mediated by a positive feedback loop downstream of the glial phagocytic receptor Draper, allowing the strength of the response to match the severity of injury.Glial cells are exquisitely sensitive to neuronal injury but mechanisms by which glia establish competence to respond to injury, continuously gauge neuronal health, and rapidly activate reactive responses remain poorly defined. Here, we show glial PI3K signaling in the uninjured brain regulates baseline levels of Draper, a receptor essential for Drosophila glia to sense and respond to axonal injury. After injury, Draper levels are up-regulated through a Stat92E-modulated, injury-responsive enhancer element within the draper gene. Surprisingly, canonical JAK/STAT signaling does not regulate draper expression. Rather, we find injury-induced draper activation is downstream of the Draper/Src42a/Shark/Rac1 engulfment signaling pathway. Thus, PI3K signaling and Stat92E are critical in vivo regulators of glial responsiveness to axonal injury. We provide evidence for a positive auto-regulatory mechanism whereby signaling through the injury-responsive Draper receptor leads to Stat92E-dependent, transcriptional activation of the draper gene. We propose that Drosophila glia use this auto-regulatory loop as a mechanism to adjust their reactive state following injury.Author Summary: Acute injuries of the central nervous system (CNS) trigger a robust reaction from glial cells—a non-neuronal population of cells that regulate and support neural development and physiology. Although this process occurs after all types of CNS trauma in mammals, how it is activated and its precise role in recovery remain poorly understood. Using the fruit fly Drosophila melanogaster as a model, we previously identified a cell surface receptor called Draper, which is required for the activation of glia after local axon injury (“axotomy”) and for the removal of degenerating axonal debris by phagocytosis. Here, we show that regulation of Draper protein levels and glial activation through the Draper signaling pathway are mediated by the well-conserved PI3K and signal transducer and activator of transcription (STAT) signaling cascades. We find that STAT transcriptional activity is activated in glia in response to axotomy, and identify an injury-responsive regulatory element within the draper gene that appears to be directly modulated by STAT. Interestingly, the intensity of STAT activity in glial cells after axotomy correlates tightly with the number of local severed axons, indicating that Drosophila glia are able to fine-tune their response to neuronal injury according to its severity. In summary, we propose that the initial phagocytic competence of glia is regulated by setting Draper baseline levels (via PI3K), whereas injury-activated glial phagocytic activity is modulated through a positive feedback loop that requires STAT-dependent activation of draper. We speculate that the level of activation of this cascade is determined by glial cell recognition of Draper ligands present on degenerating axon material, thereby matching the levels of glial reactivity to the amount of injured axonal material.

Suggested Citation

  • Johnna Doherty & Amy E Sheehan & Rachel Bradshaw & A Nicole Fox & Tsai-Yi Lu & Marc R Freeman, 2014. "PI3K Signaling and Stat92E Converge to Modulate Glial Responsiveness to Axonal Injury," PLOS Biology, Public Library of Science, vol. 12(11), pages 1-16, November.
  • Handle: RePEc:plo:pbio00:1001985
    DOI: 10.1371/journal.pbio.1001985
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001985
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1001985&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1001985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Won-Suk Chung & Laura E. Clarke & Gordon X. Wang & Benjamin K. Stafford & Alexander Sher & Chandrani Chakraborty & Julia Joung & Lynette C. Foo & Andrew Thompson & Chinfei Chen & Stephen J. Smith & Be, 2013. "Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways," Nature, Nature, vol. 504(7480), pages 394-400, December.
    2. Walton D. Jones & Pelin Cayirlioglu & Ilona Grunwald Kadow & Leslie B. Vosshall, 2007. "Two chemosensory receptors together mediate carbon dioxide detection in Drosophila," Nature, Nature, vol. 445(7123), pages 86-90, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yupu Wang & Ruiling Zhang & Sihao Huang & Parisa Tajalli Tehrani Valverde & Meike Lobb-Rabe & James Ashley & Lalanti Venkatasubramanian & Robert A. Carrillo, 2023. "Glial Draper signaling triggers cross-neuron plasticity in bystander neurons after neuronal cell death in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel S. Kim & Buu Truong & Karthik Jagadeesh & Kushal K. Dey & Amber Z. Shen & Soumya Raychaudhuri & Manolis Kellis & Alkes L. Price, 2024. "Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Danyang Chen & Qianqian Lou & Xiang-Jie Song & Fang Kang & An Liu & Changjian Zheng & Yanhua Li & Di Wang & Sen Qun & Zhi Zhang & Peng Cao & Yan Jin, 2024. "Microglia govern the extinction of acute stress-induced anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Clement Kent & Reza Azanchi & Ben Smith & Adrienne Chu & Joel Levine, 2007. "A Model-Based Analysis of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila melanogaster," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-21, September.
    4. Hidenori Tabata & Megumi Sasaki & Masakazu Agetsuma & Hitomi Sano & Yuki Hirota & Michio Miyajima & Kanehiro Hayashi & Takao Honda & Masashi Nishikawa & Yutaka Inaguma & Hidenori Ito & Hirohide Takeba, 2022. "Erratic and blood vessel-guided migration of astrocyte progenitors in the cerebral cortex," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    5. Xiaojing Shi & Longlong Luo & Jixian Wang & Hui Shen & Yongfang Li & Muyassar Mamtilahun & Chang Liu & Rubing Shi & Joon-Hyuk Lee & Hengli Tian & Zhijun Zhang & Yongting Wang & Won-Suk Chung & Yaohui , 2021. "Stroke subtype-dependent synapse elimination by reactive gliosis in mice," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    6. Ikuko Takeda & Kohei Yoshihara & Dennis L. Cheung & Tomoko Kobayashi & Masakazu Agetsuma & Makoto Tsuda & Kei Eto & Schuichi Koizumi & Hiroaki Wake & Andrew J. Moorhouse & Junichi Nabekura, 2022. "Controlled activation of cortical astrocytes modulates neuropathic pain-like behaviour," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Ting Wan & Wusheng Zhu & Ying Zhao & Xiaohao Zhang & Ruidong Ye & Meng Zuo & Pengfei Xu & Zhenqian Huang & Chunni Zhang & Yi Xie & Xinfeng Liu, 2022. "Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1001985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.