IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v66y2015i11p1887-1894.html
   My bibliography  Save this article

A novel procedure for multimodel development using the grey silhouette coefficient for small-data-set forecasting

Author

Listed:
  • Che-Jung Chang

    (Ningbo University, Ningbo City, China
    Chung Yuan Christian University, Chung-Li City, Taiwan, ROC)

  • Wen-Li Dai

    (Tainan University of Technology, Tainan City, Taiwan, ROC)

  • Chien-Chih Chen

    (National Chen Kung University, Tainan City, Taiwan, ROC)

Abstract

Small-data-set forecasting problems are a critical issue in various fields, with the early stage of a manufacturing system being a good example. Manufacturers require sufficient knowledge to minimize overall production costs, but this is difficult to achieve due to limited number of samples available at such times. This research was thus conducted to develop a modelling procedure to assist managers or decision makers in acquiring stable prediction results from small data sets. The proposed method is a two-stage procedure. First, we assessed some single models to determine whether the tendency of a real sequence can be reflected using grey incidence analysis, and we then evaluated their forecasting stability based on the relative ratio of error range. Second, a grey silhouette coefficient was developed to create an applicable hybrid forecasting model for small samples. Two real cases were analysed to confirm the effectiveness and practical value of the proposed method. The empirical results showed that the multimodel procedure can minimize forecasting errors and improve forecasting results with limited data. Consequently, the proposed procedure is considered a feasible tool for small-data-set forecasting problems.

Suggested Citation

  • Che-Jung Chang & Wen-Li Dai & Chien-Chih Chen, 2015. "A novel procedure for multimodel development using the grey silhouette coefficient for small-data-set forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1887-1894, November.
  • Handle: RePEc:pal:jorsoc:v:66:y:2015:i:11:p:1887-1894
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v66/n11/pdf/jors201517a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v66/n11/full/jors201517a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Meng & Daoli Yang & Hui Huang, 2018. "Prediction of China’s Sulfur Dioxide Emissions by Discrete Grey Model with Fractional Order Generation Operators," Complexity, Hindawi, vol. 2018, pages 1-13, January.
    2. Che-Jung Chang & Liping Yu & Peng Jin, 2016. "A mega-trend-diffusion grey forecasting model for short-term manufacturing demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1439-1445, December.
    3. Yi-Chung Hu & Peng Jiang, 2017. "Forecasting energy demand using neural-network-based grey residual modification models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 556-565, May.
    4. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
    5. Patrick Link & Miltiadis Poursanidis & Jochen Schmid & Rebekka Zache & Martin Kurnatowski & Uwe Teicher & Steffen Ihlenfeldt, 2022. "Capturing and incorporating expert knowledge into machine learning models for quality prediction in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2129-2142, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:66:y:2015:i:11:p:1887-1894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.