IDEAS home Printed from https://ideas.repec.org/a/oup/econjl/v131y2021i638p2553-2584..html
   My bibliography  Save this article

Robots and Firms

Author

Listed:
  • Michael Koch
  • Ilya Manuylov
  • Marcel Smolka

Abstract

We study the microeconomic implications of robot adoption using a rich panel data set of Spanish manufacturing firms over a 27-year period (1990–2016). We provide causal evidence on two central questions: (1) Which firm characteristics prompt firms to adopt robots? (2) What is the impact of robots on adopting firms relative to non-adopting firms? To address these questions, we look at our data through the lens of recent attempts in the literature to formalise the implications of robot technology. As for the first question, we establish robust evidence for positive selection, i.e., ex ante better performing firms (measured through output and labour productivity) are more likely to adopt robots. On the other hand, conditional on size, ex ante more skill-intensive firms are less likely to do so. As for the second question, we find that robot adoption generates substantial output gains in the vicinity of 20–25% within four years, reduces the labour cost share by 5–7% points, and leads to net job creation at a rate of 10%. These results are robust to controlling for non-random selection into robot adoption through a difference-in-differences approach combined with a propensity score reweighting estimator. To further validate these results, we also offer structural estimates of total factor productivity (TFP) where robot technology enters the (endogenous) productivity process of firms. The results demonstrate a positive causal effect of robots on productivity as well as a complementarity between robots and exporting in boosting productivity.

Suggested Citation

  • Michael Koch & Ilya Manuylov & Marcel Smolka, 2021. "Robots and Firms," The Economic Journal, Royal Economic Society, vol. 131(638), pages 2553-2584.
  • Handle: RePEc:oup:econjl:v:131:y:2021:i:638:p:2553-2584.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ej/ueab009
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hartmut Egger & Udo Kreickemeier & Jens Wrona, 2017. "Offshoring Domestic Jobs," World Scientific Book Chapters, in: International Trade and Labor Markets Welfare, Inequality and Unemployment, chapter 2, pages 27-70, World Scientific Publishing Co. Pte. Ltd..
    2. DiNardo, John & Fortin, Nicole M & Lemieux, Thomas, 1996. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach," Econometrica, Econometric Society, vol. 64(5), pages 1001-1044, September.
    3. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    4. Schmerer, Hans-Jörg & Capuano, Stella & Egger, Hartmut & Koch, Michael, 2015. "Offshoring and Firm Overlap," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113147, Verein für Socialpolitik / German Economic Association.
    5. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    6. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    7. Manav Raj & Robert Seamans, 2018. "Artificial Intelligence, Labor, Productivity, and the Need for Firm-Level Data," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 553-565, National Bureau of Economic Research, Inc.
    8. Jonathan Eaton & Samuel Kortum & Francis Kramarz, 2011. "An Anatomy of International Trade: Evidence From French Firms," Econometrica, Econometric Society, vol. 79(5), pages 1453-1498, September.
    9. Hallak, Juan Carlos & Sivadasan, Jagadeesh, 2013. "Product and process productivity: Implications for quality choice and conditional exporter premia," Journal of International Economics, Elsevier, vol. 91(1), pages 53-67.
    10. Alla Lileeva & Daniel Trefler, 2010. "Improved Access to Foreign Markets Raises Plant-level Productivity…For Some Plants," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1051-1099.
    11. Paula Bustos, 2011. "Trade Liberalization, Exports, and Technology Upgrading: Evidence on the Impact of MERCOSUR on Argentinian Firms," American Economic Review, American Economic Association, vol. 101(1), pages 304-340, February.
    12. Carmine Ornaghi, 2006. "Assessing the effects of measurement errors on the estimation of production functions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 879-891.
    13. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    14. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    15. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    16. Marc J. Melitz, 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica, Econometric Society, vol. 71(6), pages 1695-1725, November.
    17. Groizard, Jose L. & Ranjan, Priya & Rodriguez-Lopez, Antonio, 2014. "Offshoring and jobs: The myriad channels of influence," European Economic Review, Elsevier, vol. 72(C), pages 221-239.
    18. Robert Seamans & Manav Raj, 2018. "AI, Labor, Productivity and the Need for Firm-Level Data," NBER Working Papers 24239, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camiña, Ester & Díaz-Chao, Ángel & Torrent-Sellens, Joan, 2020. "Automation technologies: Long-term effects for Spanish industrial firms," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Kaltenberg, Mary & Foster-McGregor, Neil, 2020. "The impact of automation on inequality across Europe," MERIT Working Papers 2020-009, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Geiger, Niels & Prettner, Klaus & Schwarzer, Johannes A., 2018. "Automatisierung, Wachstum und Ungleichheit," Hohenheim Discussion Papers in Business, Economics and Social Sciences 13-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    4. Ballestar, María Teresa & Díaz-Chao, Ángel & Sainz, Jorge & Torrent-Sellens, Joan, 2020. "Knowledge, robots and productivity in SMEs: Explaining the second digital wave," Journal of Business Research, Elsevier, vol. 108(C), pages 119-131.
    5. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    6. Koch, Michael & Smolka, Marcel, 2019. "Foreign ownership and skill-biased technological change," Journal of International Economics, Elsevier, vol. 118(C), pages 84-104.
    7. Hémous, David & Dechezleprêtre, Antoine & Olsen, Morten & Zanella, carlo, 2019. "Automating Labor: Evidence from Firm-level Patent Data," CEPR Discussion Papers 14249, C.E.P.R. Discussion Papers.
    8. Fabrizio Leone, 2022. "Multinationals, Robots, and the Labor Share," Working Papers ECARES 2022-17, ULB -- Universite Libre de Bruxelles.
    9. Cebreros Alfonso & Heffner-Rodríguez Aldo & Livas René & Puggioni Daniela, 2020. "Automation Technologies and Employment at Risk: The Case of Mexico," Working Papers 2020-04, Banco de México.
    10. repec:hal:spmain:info:hdl:2441/7n49nkmngd8448a5ts5gt5ade0 is not listed on IDEAS
    11. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    12. Muendler, Marc-Andreas, 2017. "Trade, technology, and prosperity: An account of evidence from a labor-market perspective," WTO Staff Working Papers ERSD-2017-15, World Trade Organization (WTO), Economic Research and Statistics Division.
    13. Cilekoglu, Akin A. & Moreno, Rosina & Ramos, Raul, 2024. "The impact of robot adoption on global sourcing," Research Policy, Elsevier, vol. 53(3).
    14. Georg Graetz, 2019. "Labor Demand in the Past, Present, and Future," European Economy - Discussion Papers 114, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    15. Fossen, Frank M. & Sorgner, Alina, 2019. "New Digital Technologies and Heterogeneous Employment and Wage Dynamics in the United States: Evidence from Individual-Level Data," IZA Discussion Papers 12242, Institute of Labor Economics (IZA).
    16. Davide Dottori, 2021. "Robots and employment: evidence from Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 739-795, July.
    17. Genz Sabrina & Janser Markus & Lehmer Florian, 2019. "The Impact of Investments in New Digital Technologies on Wages – Worker-Level Evidence from Germany," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(3), pages 483-521, June.
    18. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    19. Ana Cecília Fieler & Marcela Eslava & Daniel Xu, 2014. "Trade, Skills, and Quality Upgrading: A Theory with Evidence from Colombia," NBER Working Papers 19992, National Bureau of Economic Research, Inc.
    20. Philippe Aghion & Céline Antonin & Simon Bunel, 2019. "Artificial Intelligence, Growth and Employment: The Role of Policy," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 510-511-5, pages 149-164.
    21. Sergio De Nardis & Francesca Parente, 2022. "Technology and task changes in the major EU countries," Contemporary Economic Policy, Western Economic Association International, vol. 40(2), pages 391-413, April.

    More about this item

    JEL classification:

    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • F14 - International Economics - - Trade - - - Empirical Studies of Trade
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:econjl:v:131:y:2021:i:638:p:2553-2584.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.