IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v96y2009i4p887-901.html
   My bibliography  Save this article

Marginal hazards model for case-cohort studies with multiple disease outcomes

Author

Listed:
  • S. Kang
  • J. Cai

Abstract

Case-cohort study designs are widely used to reduce the cost of large cohort studies while achieving the same goals, especially when the disease rate is low. A key advantage of the case-cohort study design is its capacity to use the same subcohort for several diseases or for several subtypes of disease. In order to compare the effect of a risk factor on different types of diseases, times to different events need to be modelled simultaneously. Valid statistical methods that take the correlations among the outcomes from the same subject into account need to be developed. To this end, we consider marginal proportional hazards regression models for case-cohort studies with multiple disease outcomes. We also consider generalized case-cohort designs that do not require sampling all the cases, which is more realistic for multiple disease outcomes. We propose an estimating equation approach for parameter estimation with two different types of weights. Consistency and asymptotic normality of the proposed estimators are established. Large sample approximation works well in small samples in simulation studies. The proposed methods are applied to the Busselton Health Study. Copyright 2009, Oxford University Press.

Suggested Citation

  • S. Kang & J. Cai, 2009. "Marginal hazards model for case-cohort studies with multiple disease outcomes," Biometrika, Biometrika Trust, vol. 96(4), pages 887-901.
  • Handle: RePEc:oup:biomet:v:96:y:2009:i:4:p:887-901
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asp059
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:bla:biomet:v:73:y:2017:i:3:p:1042-1052 is not listed on IDEAS
    2. repec:bla:biomet:v:72:y:2016:i:4:p:1037-1045 is not listed on IDEAS
    3. repec:eee:csdana:v:122:y:2018:i:c:p:59-79 is not listed on IDEAS
    4. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    5. repec:eee:csdana:v:117:y:2018:i:c:p:194-206 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:96:y:2009:i:4:p:887-901. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: https://academic.oup.com/biomet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.