IDEAS home Printed from
   My bibliography  Save this article

Effects of data dimension on empirical likelihood


  • Song Xi Chen
  • Liang Peng
  • Ying-Li Qin


We evaluate the effects of data dimension on the asymptotic normality of the empirical likelihood ratio for high-dimensional data under a general multivariate model. Data dimension and dependence among components of the multivariate random vector affect the empirical likelihood directly through the trace and the eigenvalues of the covariance matrix. The growth rates to infinity we obtain for the data dimension improve the rates of Hjort et al. (2008). Copyright 2009, Oxford University Press.

Suggested Citation

  • Song Xi Chen & Liang Peng & Ying-Li Qin, 2009. "Effects of data dimension on empirical likelihood," Biometrika, Biometrika Trust, vol. 96(3), pages 711-722.
  • Handle: RePEc:oup:biomet:v:96:y:2009:i:3:p:711-722

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    2. repec:eee:stapro:v:137:y:2018:i:c:p:40-45 is not listed on IDEAS
    3. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    4. Liu, Zhi & Xia, Xiaochao & Zhou, Wang, 2015. "A test for equality of two distributions via jackknife empirical likelihood and characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 97-114.
    5. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    6. Zhao, Yichuan, 2010. "Semiparametric inference for transformation models via empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1846-1858, September.
    7. Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
    8. repec:spr:metrik:v:81:y:2018:i:3:d:10.1007_s00184-018-0642-7 is not listed on IDEAS
    9. Francesco Giordano & Soumendra Nath Lahiri & Maria Lucia Parrella, 2014. "GRID for model structure discovering in high dimensional regression," Working Papers 3_231, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    10. repec:cep:stiecm:/2014/574 is not listed on IDEAS
    11. Karun Adusumilli & Taisuke Otsu, 2017. "Empirical Likelihood for Random Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1064-1075, July.
    12. Qinqin Hu & Lu Lin, 2017. "Conditional sure independence screening by conditional marginal empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 63-96, February.
    13. Hong Guo & Changliang Zou & Zhaojun Wang & Bin Chen, 2014. "Empirical likelihood for high-dimensional linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(7), pages 921-945, October.
    14. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    15. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    16. Li, Gao-Rong & Zhu, Li-Ping & Zhu, Li-Xing, 2010. "Adaptive confidence region for the direction in semiparametric regressions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1364-1377, July.
    17. Varron, Davit, 2016. "Empirical likelihood confidence tubes for functional parameters in plug-in estimation," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 100-118.
    18. repec:eee:jmvana:v:164:y:2018:i:c:p:22-39 is not listed on IDEAS
    19. Tang, Xingyu & Li, Jianbo & Lian, Heng, 2013. "Empirical likelihood for partially linear proportional hazards models with growing dimensions," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 22-32.
    20. Changliang Zou & Liuhua Peng & Long Feng & Zhaojun Wang, 2014. "Multivariate sign-based high-dimensional tests for sphericity," Biometrika, Biometrika Trust, vol. 101(1), pages 229-236.
    21. Hanfang Yang & Shen Liu & Yichuan Zhao, 2016. "Jackknife empirical likelihood for linear transformation models with right censoring," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(5), pages 1095-1109, October.
    22. Li, Gaorong & Lin, Lu & Zhu, Lixing, 2012. "Empirical likelihood for a varying coefficient partially linear model with diverging number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 85-111.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:96:y:2009:i:3:p:711-722. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.