IDEAS home Printed from
   My bibliography  Save this article

Generalized varying coefficient models for longitudinal data


  • Damla Şentürk
  • Hans-Georg Müller


We propose a generalization of the varying coefficient model for longitudinal data to cases where not only current but also recent past values of the predictor process affect current response. More precisely, the targeted regression coefficient functions of the proposed model have sliding window supports around current time t. A variant of a recently proposed two-step estimation method for varying coefficient models is proposed for estimation in the context of these generalized varying coefficient models, and is found to lead to improvements, especially for the case of additive measurement errors in both response and predictors. The proposed methodology for estimation and inference is also applicable for the case of additive measurement error in the common versions of varying coefficient models that relate only current observations of predictor and response processes to each other. Asymptotic distributions of the proposed estimators are derived, and the model is applied to the problem of predicting protein concentrations in a longitudinal study. Simulation studies demonstrate the efficacy of the proposed estimation procedure. Copyright 2008, Oxford University Press.

Suggested Citation

  • Damla Şentürk & Hans-Georg Müller, 2008. "Generalized varying coefficient models for longitudinal data," Biometrika, Biometrika Trust, vol. 95(3), pages 653-666.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:653-666

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zongwu Cai, 2013. "Functional Coefficient Models for Economic and Financial Data," WISE Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    2. Peixin Zhao & Liugen Xue, 2011. "Variable selection for varying coefficient models with measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 231-245, September.
    3. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:653-666. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.