IDEAS home Printed from
   My bibliography  Save this article

Analysis of clustered data: A combined estimating equations approach


  • Julie A. Stoner


Examples of clustered data include data from longitudinal studies and data sampled within groups. This paper proposes a regression analysis method for clustered data that optimally weights and combines contrasts of the data through a combination of estimating equations. Examples of combining between-cluster, within-cluster and longitudinal data contrasts are presented. The method results in increased estimation efficiency relative to generalised estimating equations with standard working correlation structures. The proposed method also simplifies modelling decisions regarding the true correlation structure of the data and avoids correlation parameter estimation. Copyright Biometrika Trust 2002, Oxford University Press.

Suggested Citation

  • Julie A. Stoner, 2002. "Analysis of clustered data: A combined estimating equations approach," Biometrika, Biometrika Trust, vol. 89(3), pages 567-578, August.
  • Handle: RePEc:oup:biomet:v:89:y:2002:i:3:p:567-578

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lan Wang & Annie Qu, 2009. "Consistent model selection and data-driven smooth tests for longitudinal data in the estimating equations approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 177-190.
    2. repec:spr:stmapp:v:15:y:2007:i:3:d:10.1007_s10260-006-0031-7 is not listed on IDEAS
    3. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    4. Jaakko Nevalainen & Denis Larocque & Hannu Oja, 2007. "A weighted spatial median for clustered data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 355-379, February.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:89:y:2002:i:3:p:567-578. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.