IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i1p109-125..html
   My bibliography  Save this article

Constrained likelihood for reconstructing a directed acyclic Gaussian graph

Author

Listed:
  • Yiping Yuan
  • Xiaotong Shen
  • Wei Pan
  • Zizhuo Wang

Abstract

SUMMARY Directed acyclic graphs are widely used to describe directional pairwise relations. Such relations are estimated by reconstructing a directed acyclic graph’s structure, which is challenging when the ordering of nodes of the graph is unknown. In such a situation, existing methods such as the neighbourhood and search-and-score methods have high estimation errors or computational complexities, especially when a local or sequential approach is used to enumerate edge directions by testing or optimizing a criterion locally, as a local method may break down even for moderately sized graphs. We propose a novel approach to simultaneously identifying all estimable directed edges and model parameters, using constrained maximum likelihood with nonconvex constraints. We develop a constraint reduction method that constructs a set of active constraints from super-exponentially many constraints. This, coupled with an alternating direction method of multipliers and a difference convex method, permits efficient computation for large-graph learning. We show that the proposed method consistently reconstructs identifiable directions of the true graph and achieves the optimal performance in terms of parameter estimation. Numerically, the method compares favourably with competitors. A protein network is analysed to demonstrate that the proposed method can make a difference in identifying the network’s structure.

Suggested Citation

  • Yiping Yuan & Xiaotong Shen & Wei Pan & Zizhuo Wang, 2019. "Constrained likelihood for reconstructing a directed acyclic Gaussian graph," Biometrika, Biometrika Trust, vol. 106(1), pages 109-125.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:1:p:109-125.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy057
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Chengchun & Li, Lexin, 2022. "Testing mediation effects using logic of Boolean matrices," LSE Research Online Documents on Economics 108881, London School of Economics and Political Science, LSE Library.
    2. Li, Lexin & Shi, Chengchun & Guo, Tengfei & Jagust, William J., 2022. "Sequential pathway inference for multimodal neuroimaging analysis," LSE Research Online Documents on Economics 111904, London School of Economics and Political Science, LSE Library.
    3. Haoran Xue & Wei Pan, 2020. "Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-30, November.
    4. Haoyu Wei & Hengrui Cai & Chengchun Shi & Rui Song, 2024. "On Efficient Inference of Causal Effects with Multiple Mediators," Papers 2401.05517, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:1:p:109-125.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.