IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i3p713-725..html
   My bibliography  Save this article

Interleaved lattice-based minimax distance designs

Author

Listed:
  • Xu He

Abstract

SummaryWe propose a new method for constructing minimax distance designs, which are useful for computer experiments. To circumvent computational difficulties, we consider designs with an interleaved lattice structure, a newly defined class of lattice that has repeated or alternated layers based on any single dimension. Such designs have boundary adaptation and low-thickness properties. From our numerical results, the proposed designs are by far the best minimax distance designs for moderate or large samples.

Suggested Citation

  • Xu He, 2017. "Interleaved lattice-based minimax distance designs," Biometrika, Biometrika Trust, vol. 104(3), pages 713-725.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:3:p:713-725.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu He, 2017. "Rotated Sphere Packing Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1612-1622, October.
    2. Hanan Luss, 1999. "On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach," Operations Research, INFORMS, vol. 47(3), pages 361-378, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabrielle Demange, 2021. "On the resolution of cross-liabilities," PSE Working Papers halshs-03151128, HAL.
    2. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    3. George Kozanidis, 2009. "Solving the linear multiple choice knapsack problem with two objectives: profit and equity," Computational Optimization and Applications, Springer, vol. 43(2), pages 261-294, June.
    4. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.
    5. Hervé Moulin & Jay Sethuraman, 2013. "The Bipartite Rationing Problem," Operations Research, INFORMS, vol. 61(5), pages 1087-1100, October.
    6. Dugardin, Frédéric & Yalaoui, Farouk & Amodeo, Lionel, 2010. "New multi-objective method to solve reentrant hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 203(1), pages 22-31, May.
    7. Hanif D. Sherali & Raymond W. Staats & Antonio A. Trani, 2003. "An Airspace Planning and Collaborative Decision-Making Model: Part I—Probabilistic Conflicts, Workload, and Equity Considerations," Transportation Science, INFORMS, vol. 37(4), pages 434-456, November.
    8. Javier Arin & Juan Miguel Benito, 2012. "Lorenz and lexicographic maximal allocations for bankruptcy problems," Documentos de Trabajo - Lan Gaiak Departamento de Economía - Universidad Pública de Navarra 1202, Departamento de Economía - Universidad Pública de Navarra.
    9. Alexandre Jacquillat & Vikrant Vaze, 2018. "Interairline Equity in Airport Scheduling Interventions," Transportation Science, INFORMS, vol. 52(4), pages 941-964, August.
    10. Selcuk Karabati & Panagiotis Kouvelis & Gang Yu, 2001. "A Min-Max-Sum Resource Allocation Problem and Its Applications," Operations Research, INFORMS, vol. 49(6), pages 913-922, December.
    11. J. N. Hooker & H. P. Williams, 2012. "Combining Equity and Utilitarianism in a Mathematical Programming Model," Management Science, INFORMS, vol. 58(9), pages 1682-1693, September.
    12. Liuqing Yang & Yongdao Zhou & Min-Qian Liu, 2021. "Maximin distance designs based on densest packings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 615-634, July.
    13. Zhang Jiangao & Shitao Yang, 2016. "On the Lexicographic Centre of Multiple Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 600-614, February.
    14. Kasin Ransikarbum & Scott J. Mason, 2016. "Multiple-objective analysis of integrated relief supply and network restoration in humanitarian logistics operations," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 49-68, January.
    15. Gang Liu & Lu Shi & Kevin W. Li, 2018. "Equitable Allocation of Blue and Green Water Footprints Based on Land-Use Types: A Case Study of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 10(10), pages 1-27, October.
    16. Hanan Luss, 2010. "Equitable bandwidth allocation in content distribution networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(3), pages 266-278, April.
    17. Hu, Shu & Yu, Dennis Z. & Fu, Ke, 2023. "Online platforms’ warehouse capacity allocation strategies for multiple products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    18. Gang Liu & Fan Hu & Yixin Wang & Huimin Wang, 2019. "Assessment of Lexicographic Minimax Allocations of Blue and Green Water Footprints in the Yangtze River Economic Belt Based on Land, Population, and Economy," IJERPH, MDPI, vol. 16(4), pages 1-21, February.
    19. Violet Xinying Chen & J. N. Hooker, 2023. "A guide to formulating fairness in an optimization model," Annals of Operations Research, Springer, vol. 326(1), pages 581-619, July.
    20. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:3:p:713-725.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.