IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i2p439-453..html
   My bibliography  Save this article

Multiply robust imputation procedures for the treatment of item nonresponse in surveys

Author

Listed:
  • Sixia Chen
  • David Haziza

Abstract

SummaryItem nonresponse in surveys is often treated through some form of imputation. We introduce multiply robust imputation in finite population sampling. This is closely related to multiple robustness, which extends double robustness. In practice, multiple nonresponse models and multiple imputation models may be fitted, each involving different subsets of covariates and possibly different link functions. An imputation procedure is said to be multiply robust if the resulting estimator is consistent when all models but one are misspecified. A jackknife variance estimator is proposed and shown to be consistent. Random and fractional imputation procedures are discussed. A simulation study suggests that the proposed estimation procedures have low bias and high efficiency.

Suggested Citation

  • Sixia Chen & David Haziza, 2017. "Multiply robust imputation procedures for the treatment of item nonresponse in surveys," Biometrika, Biometrika Trust, vol. 104(2), pages 439-453.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:2:p:439-453.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx007
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. N. K. Rao, 2021. "On Making Valid Inferences by Integrating Data from Surveys and Other Sources," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 242-272, May.
    2. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    3. Chixiang Chen & Biyi Shen & Aiyi Liu & Rongling Wu & Ming Wang, 2021. "A multiple robust propensity score method for longitudinal analysis with intermittent missing data," Biometrics, The International Biometric Society, vol. 77(2), pages 519-532, June.
    4. Sixia Chen & David Haziza, 2017. "Multiply robust imputation procedures for zero-inflated distributions in surveys," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 333-343, December.
    5. Changbao Wu & Shixiao Zhang, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1082-1086, December.
    6. Chen, Sixia & Haziza, David, 2018. "Jackknife empirical likelihood method for multiply robust estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 258-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:2:p:439-453.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://academic.oup.com/biomet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press or Christopher F. Baum (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.