IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i3p579-593..html
   My bibliography  Save this article

Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression

Author

Listed:
  • Z. Su
  • G. Zhu
  • X. Chen
  • Y. Yang

Abstract

The envelope model allows efficient estimation in multivariate linear regression. In this paper, we propose the sparse envelope model, which is motivated by applications where some response variables are invariant with respect to changes of the predictors and have zero regression coefficients. The envelope estimator is consistent but not sparse, and in many situations it is important to identify the response variables for which the regression coefficients are zero. The sparse envelope model performs variable selection on the responses and preserves the efficiency gains offered by the envelope model. Response variable selection arises naturally in many applications, but has not been studied as thoroughly as predictor variable selection. In this paper, we discuss response variable selection in both the standard multivariate linear regression and the envelope contexts. In response variable selection, even if a response has zero coefficients, it should still be retained to improve the estimation efficiency of the nonzero coefficients. This is different from the practice in predictor variable selection. We establish consistency and the oracle property and obtain the asymptotic distribution of the sparse envelope estimator.

Suggested Citation

  • Z. Su & G. Zhu & X. Chen & Y. Yang, 2016. "Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression," Biometrika, Biometrika Trust, vol. 103(3), pages 579-593.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:579-593.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asw036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. J. Eck & R. D. Cook, 2017. "Weighted envelope estimation to handle variability in model selection," Biometrika, Biometrika Trust, vol. 104(3), pages 743-749.
    2. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
    3. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).
    4. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. S. Yaser Samadi & Wiranthe B. Herath, 2023. "Reduced-rank Envelope Vector Autoregressive Models," Papers 2309.12902, arXiv.org.
    6. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    7. Alexander M. Franks, 2022. "Reducing subspace models for large‐scale covariance regression," Biometrics, The International Biometric Society, vol. 78(4), pages 1604-1613, December.
    8. Jain Yashita & Ding Shanshan & Qiu Jing, 2019. "Sliced inverse regression for integrative multi-omics data analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    9. Guo, Wenxing & Balakrishnan, Narayanaswamy & He, Mu, 2023. "Envelope-based sparse reduced-rank regression for multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    10. An, Baiguo & Zhang, Beibei, 2017. "Simultaneous selection of predictors and responses for high dimensional multivariate linear regression," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 173-177.
    11. Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:579-593.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.