IDEAS home Printed from
   My bibliography  Save this article

Division of labor increases with colony size in the harvester ant Pogonomyrmex californicus


  • C. Tate Holbrook
  • Phillip M. Barden
  • Jennifer H. Fewell


Size has profound consequences for the structure and function of biological systems, across levels of organization from cells to social groups. As tightly integrated units that vary greatly in size, eusocial insect colonies, in particular, are expected to exhibit social scaling relations. To address the question of how social organization scales with colony size, we quantified task performance in variably sized colonies of the harvester ant Pogonomyrmex californicus. We found a positive scaling relationship between colony size and division of labor in 2 different contexts. First, individual workers were more specialized in older, larger colonies. Second, division of labor increased with colony size, independently of colony age. Moreover, the proportional allocation of workers to tasks shifted during colony ontogeny--older, larger colonies performed relatively less brood care--but did not vary with colony size among same-aged colonies. There were no colony-size effects on per capita activity or the distribution of activity across workers. Size-related changes in task performance were correlated with changes in the rate of encounter between nest mates. These results highlight the importance of colony size for the organization of work in insect societies and raise broader questions about the role of size in sociobiology. Copyright 2011, Oxford University Press.

Suggested Citation

  • C. Tate Holbrook & Phillip M. Barden & Jennifer H. Fewell, 2011. "Division of labor increases with colony size in the harvester ant Pogonomyrmex californicus," Behavioral Ecology, International Society for Behavioral Ecology, vol. 22(5), pages 960-966.
  • Handle: RePEc:oup:beheco:v:22:y:2011:i:5:p:960-966

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bates, Douglas & M├Ąchler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:22:y:2011:i:5:p:960-966. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.