IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v602y2022i7898d10.1038_s41586-021-04386-2.html
   My bibliography  Save this article

Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift

Author

Listed:
  • Elisabetta Cameroni

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • John E. Bowen

    (University of Washington)

  • Laura E. Rosen

    (Vir Biotechnology)

  • Christian Saliba

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • Samantha K. Zepeda

    (University of Washington)

  • Katja Culap

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • Dora Pinto

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • Laura A. VanBlargan

    (Washington University of School of Medicine)

  • Anna Marco

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • Julia Iulio

    (Vir Biotechnology)

  • Fabrizia Zatta

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • Hannah Kaiser

    (Vir Biotechnology)

  • Julia Noack

    (Vir Biotechnology)

  • Nisar Farhat

    (Vir Biotechnology)

  • Nadine Czudnochowski

    (Vir Biotechnology)

  • Colin Havenar-Daughton

    (Vir Biotechnology)

  • Kaitlin R. Sprouse

    (University of Washington)

  • Josh R. Dillen

    (Vir Biotechnology)

  • Abigail E. Powell

    (Vir Biotechnology)

  • Alex Chen

    (Vir Biotechnology)

  • Cyrus Maher

    (Vir Biotechnology)

  • Li Yin

    (Vir Biotechnology)

  • David Sun

    (Vir Biotechnology)

  • Leah Soriaga

    (Vir Biotechnology)

  • Jessica Bassi

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • Chiara Silacci-Fregni

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • Claes Gustafsson

    (ATUM)

  • Nicholas M. Franko

    (University of Washington)

  • Jenni Logue

    (University of Washington)

  • Najeeha Talat Iqbal

    (Aga Khan University)

  • Ignacio Mazzitelli

    (Universidad de Buenos Aires)

  • Jorge Geffner

    (Universidad de Buenos Aires)

  • Renata Grifantini

    (National Institute of Molecular Genetics)

  • Helen Chu

    (University of Washington)

  • Andrea Gori

    (Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico)

  • Agostino Riva

    (Università di Milano)

  • Olivier Giannini

    (Università della Svizzera italiana
    Ente Ospedaliero Cantonale)

  • Alessandro Ceschi

    (Università della Svizzera italiana
    Ente Ospedaliero Cantonale
    Ente Ospedaliero Cantonale
    University Hospital Zurich)

  • Paolo Ferrari

    (Università della Svizzera italiana
    Ente Ospedaliero Cantonale
    University of New South Wales)

  • Pietro E. Cippà

    (Ente Ospedaliero Cantonale
    Ente Ospedaliero Cantonale
    University of Zurich)

  • Alessandra Franzetti-Pellanda

    (Clinica Luganese Moncucco)

  • Christian Garzoni

    (Clinica Luganese Moncucco)

  • Peter J. Halfmann

    (University of Wisconsin–Madison)

  • Yoshihiro Kawaoka

    (University of Wisconsin–Madison
    University of Tokyo
    National Center for Global Health and Medicine Research Institute)

  • Christy Hebner

    (Vir Biotechnology)

  • Lisa A. Purcell

    (Vir Biotechnology)

  • Luca Piccoli

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • Matteo Samuele Pizzuto

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

  • Alexandra C. Walls

    (University of Washington
    Howard Hughes Medical Institute)

  • Michael S. Diamond

    (Washington University of School of Medicine
    Washington University School of Medicine
    Washington University School of Medicine)

  • Amalio Telenti

    (Vir Biotechnology)

  • Herbert W. Virgin

    (Vir Biotechnology
    Washington University School of Medicine
    UT Southwestern Medical Center)

  • Antonio Lanzavecchia

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology
    National Institute of Molecular Genetics)

  • Gyorgy Snell

    (Vir Biotechnology)

  • David Veesler

    (University of Washington
    Howard Hughes Medical Institute)

  • Davide Corti

    (Humabs Biomed SA, a subsidiary of Vir Biotechnology)

Abstract

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.

Suggested Citation

  • Elisabetta Cameroni & John E. Bowen & Laura E. Rosen & Christian Saliba & Samantha K. Zepeda & Katja Culap & Dora Pinto & Laura A. VanBlargan & Anna Marco & Julia Iulio & Fabrizia Zatta & Hannah Kaise, 2022. "Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift," Nature, Nature, vol. 602(7898), pages 664-670, February.
  • Handle: RePEc:nat:nature:v:602:y:2022:i:7898:d:10.1038_s41586-021-04386-2
    DOI: 10.1038/s41586-021-04386-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04386-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04386-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia R. Port & Claude Kwe Yinda & Jade C. Riopelle & Zachary A. Weishampel & Taylor A. Saturday & Victoria A. Avanzato & Jonathan E. Schulz & Myndi G. Holbrook & Kent Barbian & Rose Perry-Gottschalk , 2023. "Infection- or AZD1222 vaccine-mediated immunity reduces SARS-CoV-2 transmission but increases Omicron competitiveness in hamsters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Markus Hoffmann & Lok-Yin Roy Wong & Prerna Arora & Lu Zhang & Cheila Rocha & Abby Odle & Inga Nehlmeier & Amy Kempf & Anja Richter & Nico Joel Halwe & Jacob Schön & Lorenz Ulrich & Donata Hoffmann & , 2023. "Omicron subvariant BA.5 efficiently infects lung cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Cai He & Jingyun Yang & Weiqi Hong & Zimin Chen & Dandan Peng & Hong Lei & Aqu Alu & Xuemei He & Zhenfei Bi & Xiaohua Jiang & Guowen Jia & Yun Yang & Yanan Zhou & Wenhai Yu & Cong Tang & Qing Huang & , 2022. "A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Tu, Yunbo & Meng, Xinzhu, 2023. "A reaction–diffusion epidemic model with virus mutation and media coverage: Theoretical analysis and numerical simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 28-67.
    5. Annika Rössler & Antonia Netzl & Ludwig Knabl & Helena Schäfer & Samuel H. Wilks & David Bante & Barbara Falkensammer & Wegene Borena & Dorothee Laer & Derek J. Smith & Janine Kimpel, 2022. "BA.2 and BA.5 omicron differ immunologically from both BA.1 omicron and pre-omicron variants," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Mingxi Li & Yifei Ren & Zhen Qin Aw & Bo Chen & Ziqing Yang & Yuqing Lei & Lin Cheng & Qingtai Liang & Junxian Hong & Yiling Yang & Jing Chen & Yi Hao Wong & Jing Wei & Sisi Shan & Senyan Zhang & Jiwa, 2022. "Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Junhwi Jeon & Changyong Han & Tobhin Kim & Sunmi Lee, 2022. "Evolution of Responses to COVID-19 and Epidemiological Characteristics in South Korea," IJERPH, MDPI, vol. 19(7), pages 1-20, March.
    8. James Brett Case & Samantha Mackin & John M. Errico & Zhenlu Chong & Emily A. Madden & Bradley Whitener & Barbara Guarino & Michael A. Schmid & Kim Rosenthal & Kuishu Ren & Ha V. Dang & Gyorgy Snell &, 2022. "Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Saya Moriyama & Yuki Anraku & Shunta Taminishi & Yu Adachi & Daisuke Kuroda & Shunsuke Kita & Yusuke Higuchi & Yuhei Kirita & Ryutaro Kotaki & Keisuke Tonouchi & Kohei Yumoto & Tateki Suzuki & Taiyou , 2023. "Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Yubin Liu & Ziyi Wang & Xinyu Zhuang & Shengnan Zhang & Zhicheng Chen & Yan Zou & Jie Sheng & Tianpeng Li & Wanbo Tai & Jinfang Yu & Yanqun Wang & Zhaoyong Zhang & Yunfeng Chen & Liangqin Tong & Xi Yu, 2023. "Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Emanuele Andreano & Ida Paciello & Silvia Marchese & Lorena Donnici & Giulio Pierleoni & Giulia Piccini & Noemi Manganaro & Elisa Pantano & Valentina Abbiento & Piero Pileri & Linda Benincasa & Ginevr, 2022. "Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Lisa-Marie Funk & Gereon Poschmann & Fabian Rabe von Pappenheim & Ashwin Chari & Kim M. Stegmann & Antje Dickmanns & Marie Wensien & Nora Eulig & Elham Paknia & Gabi Heyne & Elke Penka & Arwen R. Pear, 2024. "Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Georg M. N. Behrens & Joana Barros-Martins & Anne Cossmann & Gema Morillas Ramos & Metodi V. Stankov & Ivan Odak & Alexandra Dopfer-Jablonka & Laura Hetzel & Miriam Köhler & Gwendolyn Patzer & Christo, 2022. "BNT162b2-boosted immune responses six months after heterologous or homologous ChAdOx1nCoV-19/BNT162b2 vaccination against COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Maximilian A. Funk & Judith Leitner & Marlene C. Gerner & Jasmin M. Hammerler & Benjamin Salzer & Manfred Lehner & Claire Battin & Simon Gumpelmair & Karin Stiasny & Katharina Grabmeier-Pfistershammer, 2023. "Interrogating ligand-receptor interactions using highly sensitive cellular biosensors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Dhiraj Mannar & James W. Saville & Chad Poloni & Xing Zhu & Alison Bezeruk & Keith Tidey & Sana Ahmed & Katharine S. Tuttle & Faezeh Vahdatihassani & Spencer Cholak & Laura Cook & Theodore S. Steiner , 2024. "Altered receptor binding, antibody evasion and retention of T cell recognition by the SARS-CoV-2 XBB.1.5 spike protein," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Alief Moulana & Thomas Dupic & Angela M. Phillips & Jeffrey Chang & Serafina Nieves & Anne A. Roffler & Allison J. Greaney & Tyler N. Starr & Jesse D. Bloom & Michael M. Desai, 2022. "Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Leander Witte & Viren A. Baharani & Fabian Schmidt & Zijun Wang & Alice Cho & Raphael Raspe & Camila Guzman-Cardozo & Frauke Muecksch & Marie Canis & Debby J. Park & Christian Gaebler & Marina Caskey , 2023. "Epistasis lowers the genetic barrier to SARS-CoV-2 neutralizing antibody escape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Kuan-Ying A. Huang & Xiaorui Chen & Arpita Mohapatra & Hong Thuy Vy Nguyen & Lisa Schimanski & Tiong Kit Tan & Pramila Rijal & Susan K. Vester & Rory A. Hills & Mark Howarth & Jennifer R. Keeffe & Ale, 2023. "Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Jernej Pušnik & Jasmin Zorn & Werner O. Monzon-Posadas & Kathrin Peters & Emmanuil Osypchuk & Sabine Blaschke & Hendrik Streeck, 2024. "Vaccination impairs de novo immune response to omicron breakthrough infection, a precondition for the original antigenic sin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:602:y:2022:i:7898:d:10.1038_s41586-021-04386-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.