IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v570y2019i7762d10.1038_s41586-019-1293-1.html
   My bibliography  Save this article

45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet

Author

Listed:
  • Seungyong Hahn

    (Florida State University
    Seoul National University)

  • Kwanglok Kim

    (Florida State University)

  • Kwangmin Kim

    (Florida State University)

  • Xinbo Hu

    (Florida State University)

  • Thomas Painter

    (Florida State University)

  • Iain Dixon

    (Florida State University)

  • Seokho Kim

    (Florida State University
    Changwon National University)

  • Kabindra R. Bhattarai

    (Florida State University
    FAMU-FSU College of Engineering)

  • So Noguchi

    (Florida State University
    Hokkaido University)

  • Jan Jaroszynski

    (Florida State University)

  • David C. Larbalestier

    (Florida State University
    FAMU-FSU College of Engineering)

Abstract

Strong magnetic fields are required in many fields, such as medicine (magnetic resonance imaging), pharmacy (nuclear magnetic resonance), particle accelerators (such as the Large Hadron Collider) and fusion devices (for example, the International Thermonuclear Experimental Reactor, ITER), as well as for other diverse scientific and industrial uses. For almost two decades, 45 tesla has been the highest achievable direct-current (d.c.) magnetic field; however, such a field requires the use of a 31-megawatt, 33.6-tesla resistive magnet inside 11.4-tesla low-temperature superconductor coils1, and such high-power resistive magnets are available in only a few facilities worldwide2. By contrast, superconducting magnets are widespread owing to their low power requirements. Here we report a high-temperature superconductor coil that generates a magnetic field of 14.4 tesla inside a 31.1-tesla resistive background magnet to obtain a d.c. magnetic field of 45.5 tesla—the highest field achieved so far, to our knowledge. The magnet uses a conductor tape coated with REBCO (REBa2Cu3Ox, where RE = Y, Gd) on a 30-micrometre-thick substrate3, making the coil highly compact and capable of operating at the very high winding current density of 1,260 amperes per square millimetre. Operation at such a current density is possible only because the magnet is wound without insulation4, which allows rapid and safe quenching from the superconducting to the normal state5–10. The 45.5-tesla test magnet validates predictions11 for high-field copper oxide superconductor magnets by achieving a field twice as high as those generated by low-temperature superconducting magnets.

Suggested Citation

  • Seungyong Hahn & Kwanglok Kim & Kwangmin Kim & Xinbo Hu & Thomas Painter & Iain Dixon & Seokho Kim & Kabindra R. Bhattarai & So Noguchi & Jan Jaroszynski & David C. Larbalestier, 2019. "45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet," Nature, Nature, vol. 570(7762), pages 496-499, June.
  • Handle: RePEc:nat:nature:v:570:y:2019:i:7762:d:10.1038_s41586-019-1293-1
    DOI: 10.1038/s41586-019-1293-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1293-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1293-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chao & Li, Gengyao & Xin, Ying & Li, Bin, 2022. "Mechanism of a novel mechanically operated contactless HTS energy converter," Energy, Elsevier, vol. 241(C).
    2. Dong, Fangliang & Huang, Zhen & Xu, Xiaoyong & Hao, Luning & Shao, Nan & Jin, Zhijian, 2020. "Improvement of magnetic and cryogenic energy preservation performances in a feeding-power-free superconducting magnet system for maglevs," Energy, Elsevier, vol. 190(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:570:y:2019:i:7762:d:10.1038_s41586-019-1293-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.