IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v566y2019i7742d10.1038_s41586-019-0875-2.html
   My bibliography  Save this article

Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline

Author

Listed:
  • Hannah A. Grunwald

    (University of California, San Diego)

  • Valentino M. Gantz

    (University of California, San Diego)

  • Gunnar Poplawski

    (University of California, San Diego
    National University of Singapore)

  • Xiang-Ru S. Xu

    (University of California, San Diego)

  • Ethan Bier

    (University of California, San Diego
    University of California, San Diego)

  • Kimberly L. Cooper

    (University of California, San Diego
    University of California, San Diego)

Abstract

A gene drive biases the transmission of one of the two copies of a gene such that it is inherited more frequently than by random segregation. Highly efficient gene drive systems have recently been developed in insects, which leverage the sequence-targeted DNA cleavage activity of CRISPR–Cas9 and endogenous homology-directed repair mechanisms to convert heterozygous genotypes to homozygosity1–4. If implemented in laboratory rodents, similar systems would enable the rapid assembly of currently impractical genotypes that involve multiple homozygous genes (for example, to model multigenic human diseases). To our knowledge, however, such a system has not yet been demonstrated in mammals. Here we use an active genetic element that encodes a guide RNA, which is embedded in the mouse tyrosinase (Tyr) gene, to evaluate whether targeted gene conversion can occur when CRISPR–Cas9 is active in the early embryo or in the developing germline. Although Cas9 efficiently induces double-stranded DNA breaks in the early embryo and male germline, these breaks are not corrected by homology-directed repair. By contrast, Cas9 expression limited to the female germline induces double-stranded breaks that are corrected by homology-directed repair, which copies the active genetic element from the donor to the receiver chromosome and increases its rate of inheritance in the next generation. These results demonstrate the feasibility of CRISPR–Cas9-mediated systems that bias inheritance of desired alleles in mice and that have the potential to transform the use of rodent models in basic and biomedical research.

Suggested Citation

  • Hannah A. Grunwald & Valentino M. Gantz & Gunnar Poplawski & Xiang-Ru S. Xu & Ethan Bier & Kimberly L. Cooper, 2019. "Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline," Nature, Nature, vol. 566(7742), pages 105-109, February.
  • Handle: RePEc:nat:nature:v:566:y:2019:i:7742:d:10.1038_s41586-019-0875-2
    DOI: 10.1038/s41586-019-0875-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0875-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0875-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alena L. Bishop & Víctor López Del Amo & Emily M. Okamoto & Zsolt Bodai & Alexis C. Komor & Valentino M. Gantz, 2022. "Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Sara Sanz Juste & Emily M. Okamoto & Christina Nguyen & Xuechun Feng & Víctor López Del Amo, 2023. "Next-generation CRISPR gene-drive systems using Cas12a nuclease," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Alejo Menchaca, 2021. "Sustainable Food Production: The Contribution of Genome Editing in Livestock," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    4. Angela Meccariello & Shibo Hou & Serafima Davydova & James Daniel Fawcett & Alexandra Siddall & Philip T. Leftwich & Flavia Krsticevic & Philippos Aris Papathanos & Nikolai Windbichler, 2024. "Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Sebald A. N. Verkuijl & Estela Gonzalez & Ming Li & Joshua X. D. Ang & Nikolay P. Kandul & Michelle A. E. Anderson & Omar S. Akbari & Michael B. Bonsall & Luke Alphey, 2022. "A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Michelle A. E. Anderson & Estela Gonzalez & Matthew P. Edgington & Joshua X. D. Ang & Deepak-Kumar Purusothaman & Lewis Shackleford & Katherine Nevard & Sebald A. N. Verkuijl & Timothy Harvey-Samuel &, 2024. "A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Charlotte Douglas & Valdone Maciulyte & Jasmin Zohren & Daniel M. Snell & Shantha K. Mahadevaiah & Obah A. Ojarikre & Peter J. I. Ellis & James M. A. Turner, 2021. "CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:566:y:2019:i:7742:d:10.1038_s41586-019-0875-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.