IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v514y2014i7520d10.1038_nature13556.html
   My bibliography  Save this article

Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity

Author

Listed:
  • Andriy Marusyk

    (Dana-Farber Cancer Institute
    Brigham and Women’s Hospital
    Harvard Medical School)

  • Doris P. Tabassum

    (Dana-Farber Cancer Institute
    BBS Program, Harvard Medical School)

  • Philipp M. Altrock

    (Dana-Farber Cancer Institute
    Harvard School of Public Health
    Program for Evolutionary Dynamics, Harvard University)

  • Vanessa Almendro

    (Dana-Farber Cancer Institute
    Brigham and Women’s Hospital
    Harvard Medical School)

  • Franziska Michor

    (Dana-Farber Cancer Institute
    Harvard School of Public Health)

  • Kornelia Polyak

    (Dana-Farber Cancer Institute
    Brigham and Women’s Hospital
    Harvard Medical School
    BBS Program, Harvard Medical School)

Abstract

Cancers arise through a process of somatic evolution that can result in substantial sub-clonal heterogeneity within tumours. The mechanisms responsible for the coexistence of distinct sub-clones and the biological consequences of this coexistence remain poorly understood. Here we used a mouse xenograft model to investigate the impact of sub-clonal heterogeneity on tumour phenotypes and the competitive expansion of individual clones. We found that tumour growth can be driven by a minor cell subpopulation, which enhances the proliferation of all cells within a tumour by overcoming environmental constraints and yet can be outcompeted by faster proliferating competitors, resulting in tumour collapse. We developed a mathematical modelling framework to identify the rules underlying the generation of intra-tumour clonal heterogeneity. We found that non-cell-autonomous driving of tumour growth, together with clonal interference, stabilizes sub-clonal heterogeneity, thereby enabling inter-clonal interactions that can lead to new phenotypic traits.

Suggested Citation

  • Andriy Marusyk & Doris P. Tabassum & Philipp M. Altrock & Vanessa Almendro & Franziska Michor & Kornelia Polyak, 2014. "Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity," Nature, Nature, vol. 514(7520), pages 54-58, October.
  • Handle: RePEc:nat:nature:v:514:y:2014:i:7520:d:10.1038_nature13556
    DOI: 10.1038/nature13556
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13556
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lavrentovich, Maxim O. & Nelson, David R., 2015. "Survival probabilities at spherical frontiers," Theoretical Population Biology, Elsevier, vol. 102(C), pages 26-39.
    2. Bernardo P de Almeida & André F Vieira & Joana Paredes & Mónica Bettencourt-Dias & Nuno L Barbosa-Morais, 2019. "Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-31, March.
    3. Ohtsuki, Hisashi & Innan, Hideki, 2017. "Forward and backward evolutionary processes and allele frequency spectrum in a cancer cell population," Theoretical Population Biology, Elsevier, vol. 117(C), pages 43-50.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:514:y:2014:i:7520:d:10.1038_nature13556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.