IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v513y2014i7519d10.1038_nature13579.html
   My bibliography  Save this article

Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease

Author

Listed:
  • Carolin Anders

    (University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland)

  • Ole Niewoehner

    (University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland)

  • Alessia Duerst

    (University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland)

  • Martin Jinek

    (University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland)

Abstract

Crystal structure of the RNA-guided endonuclease Cas9 bound to a guide RNA and a target DNA duplex reveals how base-specific recognition of a short motif known as PAM in the DNA target results in localized strand separation in the DNA immediately upstream of the PAM, allowing the target DNA strand to hybridize to the guide RNA.

Suggested Citation

  • Carolin Anders & Ole Niewoehner & Alessia Duerst & Martin Jinek, 2014. "Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease," Nature, Nature, vol. 513(7519), pages 569-573, September.
  • Handle: RePEc:nat:nature:v:513:y:2014:i:7519:d:10.1038_nature13579
    DOI: 10.1038/nature13579
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13579
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuki Kato & Sae Okazaki & Soumya Kannan & Han Altae-Tran & F. Esra Demircioglu & Yukari Isayama & Junichiro Ishikawa & Masahiro Fukuda & Rhiannon K. Macrae & Tomohiro Nishizawa & Kira S. Makarova & , 2022. "Structure of the IscB–ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Behrouz Eslami-Mossallam & Misha Klein & Constantijn V. D. Smagt & Koen V. D. Sanden & Stephen K. Jones & John A. Hawkins & Ilya J. Finkelstein & Martin Depken, 2022. "A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jian Wang & Yuxi Teng & Ruihua Zhang & Yifei Wu & Lei Lou & Yusong Zou & Michelle Li & Zhong-Ru Xie & Yajun Yan, 2021. "Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Adeeb Rahman & Neeti Sanan-Mishra, 2024. "When an Intruder Comes Home: GM and GE Strategies to Combat Virus Infection in Plants," Agriculture, MDPI, vol. 14(2), pages 1-26, February.
    5. Yang Liu & Filipe Pinto & Xinyi Wan & Zhugen Yang & Shuguang Peng & Mengxi Li & Jonathan M. Cooper & Zhen Xie & Christopher E. French & Baojun Wang, 2022. "Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Shiran Abadi & Winston X Yan & David Amar & Itay Mayrose, 2017. "A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-24, October.
    7. Dalton T. Ham & Tyler S. Browne & Pooja N. Banglorewala & Tyler L. Wilson & Richard K. Michael & Gregory B. Gloor & David R. Edgell, 2023. "A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Eman A. Ageely & Ramadevi Chilamkurthy & Sunit Jana & Leonora Abdullahu & Daniel O’Reilly & Philip J. Jensik & Masad J. Damha & Keith T. Gagnon, 2021. "Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:513:y:2014:i:7519:d:10.1038_nature13579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.