IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v483y2012i7389d10.1038_nature10889.html
   My bibliography  Save this article

DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response

Author

Listed:
  • Anton Kuzyk

    (Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
    Present address: Department of Applied Physics, Aalto University School of Science, FI-00076 Aalto, Finland.)

  • Robert Schreiber

    (Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany)

  • Zhiyuan Fan

    (Ohio University)

  • Günther Pardatscher

    (Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany)

  • Eva-Maria Roller

    (Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany)

  • Alexander Högele

    (Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany)

  • Friedrich C. Simmel

    (Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany)

  • Alexander O. Govorov

    (Ohio University)

  • Tim Liedl

    (Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany)

Abstract

Using DNA origami enables the high-yield production of chiral structures containing nanoparticles arranged in helices, with a tunable optical response.

Suggested Citation

  • Anton Kuzyk & Robert Schreiber & Zhiyuan Fan & Günther Pardatscher & Eva-Maria Roller & Alexander Högele & Friedrich C. Simmel & Alexander O. Govorov & Tim Liedl, 2012. "DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response," Nature, Nature, vol. 483(7389), pages 311-314, March.
  • Handle: RePEc:nat:nature:v:483:y:2012:i:7389:d:10.1038_nature10889
    DOI: 10.1038/nature10889
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10889
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jeroen F. Dyck & Jonathan R. Burns & Kyle I. P. Huray & Albert Konijnenberg & Stefan Howorka & Frank Sobott, 2022. "Sizing up DNA nanostructure assembly with native mass spectrometry and ion mobility," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Nam Heon Cho & Young Bi Kim & Yoon Young Lee & Sang Won Im & Ryeong Myeong Kim & Jeong Won Kim & Seok Daniel Namgung & Hye-Eun Lee & Hyeohn Kim & Jeong Hyun Han & Hye Won Chung & Yoon Ho Lee & Jeong W, 2022. "Adenine oligomer directed synthesis of chiral gold nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Muhammad Yaseen & Muhammad Humayun & Abbas Khan & Muhammad Usman & Habib Ullah & Asif Ali Tahir & Habib Ullah, 2021. "Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review," Energies, MDPI, vol. 14(5), pages 1-88, February.
    5. Yahong Chen & Chaoyong Yang & Zhi Zhu & Wei Sun, 2022. "Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Zhiyuan Ding & Si Gao & Weina Fang & Chen Huang & Liqi Zhou & Xudong Pei & Xiaoguo Liu & Xiaoqing Pan & Chunhai Fan & Angus I. Kirkland & Peng Wang, 2022. "Three-dimensional electron ptychography of organic–inorganic hybrid nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zhiwei Yang & Yanze Wei & Jingjing Wei & Zhijie Yang, 2022. "Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Nan Xia & Jianpei Xing & Di Peng & Shiyu Ji & Jun Zha & Nan Yan & Yan Su & Xue Jiang & Zhi Zeng & Jijun Zhao & Zhikun Wu, 2022. "Assembly-induced spin transfer and distance-dependent spin coupling in atomically precise AgCu nanoclusters," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Alexandru Amărioarei & Frankie Spencer & Gefry Barad & Ana-Maria Gheorghe & Corina Iţcuş & Iris Tuşa & Ana-Maria Prelipcean & Andrei Păun & Mihaela Păun & Alfonso Rodriguez-Paton & Romică Trandafir & , 2021. "DNA-Guided Assembly for Fibril Proteins," Mathematics, MDPI, vol. 9(4), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:483:y:2012:i:7389:d:10.1038_nature10889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.