IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v457y2009i7227d10.1038_nature07616.html
   My bibliography  Save this article

A tunable synthetic mammalian oscillator

Author

Listed:
  • Marcel Tigges

    (ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland)

  • Tatiana T. Marquez-Lago

    (ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
    Institute of Computational Science and,
    Swiss Institute of Bioinformatics, ETH Zurich, CH-8092 Zurich, Switzerland)

  • Jörg Stelling

    (ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
    Institute of Computational Science and,
    Swiss Institute of Bioinformatics, ETH Zurich, CH-8092 Zurich, Switzerland)

  • Martin Fussenegger

    (ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland)

Abstract

An around-the-clock synthetic gene circuit Synthetic gene circuits producing oscillating outputs have been developed only in bacteria, and it has been difficult to make them reliable even there. Tigges et al. have now developed a synthetic sense–antisense circuit in mammalian cells that produces autonomous, self-sustained and tunable cyclic gene expression. This synthetic mammalian clock will be of use in the study of oscillations in mammalian cells, and may improve our understanding of the circadian clock and associated pathologies.

Suggested Citation

  • Marcel Tigges & Tatiana T. Marquez-Lago & Jörg Stelling & Martin Fussenegger, 2009. "A tunable synthetic mammalian oscillator," Nature, Nature, vol. 457(7227), pages 309-312, January.
  • Handle: RePEc:nat:nature:v:457:y:2009:i:7227:d:10.1038_nature07616
    DOI: 10.1038/nature07616
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07616
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shunsuke Kawasaki & Hiroki Ono & Moe Hirosawa & Takeru Kuwabara & Shunsuke Sumi & Suji Lee & Knut Woltjen & Hirohide Saito, 2023. "Programmable mammalian translational modulators by CRISPR-associated proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Sara Hooshangi & William E Bentley, 2011. "LsrR Quorum Sensing “Switch” Is Revealed by a Bottom-Up Approach," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-11, September.
    3. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    4. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    5. Lukas Aufinger & Johann Brenner & Friedrich C. Simmel, 2022. "Complex dynamics in a synchronized cell-free genetic clock," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    7. Lucia Marucci & David A W Barton & Irene Cantone & Maria Aurelia Ricci & Maria Pia Cosma & Stefania Santini & Diego di Bernardo & Mario di Bernardo, 2009. "How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    8. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    9. Astakhov, Sergey & Astakhov, Oleg & Fadeeva, Natalia & Astakhov, Vladimir, 2021. "Multistability, quasiperiodicity and chaos in a self-oscillating ring dynamical system with three degrees of freedom based on the van der Pol generator," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:457:y:2009:i:7227:d:10.1038_nature07616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.