IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v451y2008i7181d10.1038_nature06669.html
   My bibliography  Save this article

Self-healing and thermoreversible rubber from supramolecular assembly

Author

Listed:
  • Philippe Cordier

    (Matière Molle et Chimie, UMR 7167 CNRS-ESPCI, Ecole Supérieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France)

  • François Tournilhac

    (Matière Molle et Chimie, UMR 7167 CNRS-ESPCI, Ecole Supérieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France)

  • Corinne Soulié-Ziakovic

    (Matière Molle et Chimie, UMR 7167 CNRS-ESPCI, Ecole Supérieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France)

  • Ludwik Leibler

    (Matière Molle et Chimie, UMR 7167 CNRS-ESPCI, Ecole Supérieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France)

Abstract

Self-mending rubber When a rubber-band breaks, that's it: time to get another one. But a remarkable new material described in this issue behaves rather differently. Consisting of molecules containing three different functional groups that form multiple hydrogen bonds, the molecules associate to form a 'supramolecular rubber' containing both chains and cross-links. The system shows rubber-like behaviour, that is, recoverable extensibility when stretched to several times its original length. In contrast to conventional rubbers made of macromolecules, these systems when broken or cut can self-heal when the fractured surfaces are brought together at room temperature. The new material can be synthesized from simple ingredients — fatty acids and urea — and once synthesized it is readily reprocessed. In its current form supramolecular rubber has slow strain recovery and it 'creeps' under stress, but by adjusting the starting ingredients, a spectrum of properties is attainable.

Suggested Citation

  • Philippe Cordier & François Tournilhac & Corinne Soulié-Ziakovic & Ludwik Leibler, 2008. "Self-healing and thermoreversible rubber from supramolecular assembly," Nature, Nature, vol. 451(7181), pages 977-980, February.
  • Handle: RePEc:nat:nature:v:451:y:2008:i:7181:d:10.1038_nature06669
    DOI: 10.1038/nature06669
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06669
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianhua Lang & Yingjie Huang & Lirong He & Yixi Wang & Udayabhaskararao Thumu & Zonglin Chu & Wilhelm T. S. Huck & Hui Zhao, 2023. "Mechanosensitive non-equilibrium supramolecular polymerization in closed chemical systems," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Gorshkov, Vyacheslav & Privman, Vladimir & Libert, Sergiy, 2016. "Lattice percolation approach to 3D modeling of tissue aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 207-216.
    3. Xuemei Fu & Guanxiang Wan & Hongchen Guo & Han-Joon Kim & Zijie Yang & Yu Jun Tan & John S. Ho & Benjamin C. K. Tee, 2024. "Self-healing actuatable electroluminescent fibres," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Alexander D. Snyder & Zachary J. Phillips & Jack S. Turicek & Charles E. Diesendruck & Kalyana B. Nakshatrala & Jason F. Patrick, 2022. "Prolonged in situ self-healing in structural composites via thermo-reversible entanglement," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Haili Qin & Ping Liu & Chuanrui Chen & Huai-Ping Cong & Shu-Hong Yu, 2021. "A multi-responsive healable supercapacitor," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:451:y:2008:i:7181:d:10.1038_nature06669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.