IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7005d10.1038_nature02908.html
   My bibliography  Save this article

Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase

Author

Listed:
  • Gerald W. Hsu

    (Duke University Medical Center)

  • Matthias Ober

    (Ludwig Maximilians University Munich)

  • Thomas Carell

    (Ludwig Maximilians University Munich)

  • Lorena S. Beese

    (Duke University Medical Center)

Abstract

Aerobic respiration generates reactive oxygen species that can damage guanine residues and lead to the production of 8-oxoguanine (8oxoG), the major mutagenic oxidative lesion in the genome1. Oxidative damage is implicated in ageing2 and cancer, and its prevalence presents a constant challenge to DNA polymerases that ensure accurate transmission of genomic information. When these polymerases encounter 8oxoG, they frequently catalyse misincorporation of adenine in preference to accurate incorporation of cytosine3. This results in the propagation of G to T transversions, which are commonly observed somatic mutations associated with human cancers4,5. Here, we present sequential snapshots of a high-fidelity DNA polymerase during both accurate and mutagenic replication of 8oxoG. Comparison of these crystal structures reveals that 8oxoG induces an inversion of the mismatch recognition mechanisms that normally proofread DNA, such that the 8oxoG·adenine mismatch mimics a cognate base pair whereas the 8oxoG·cytosine base pair behaves as a mismatch. These studies reveal a fundamental mechanism of error-prone replication and show how 8oxoG, and DNA lesions in general, can form mismatches that evade polymerase error-detection mechanisms, potentially leading to the stable incorporation of lethal mutations.

Suggested Citation

  • Gerald W. Hsu & Matthias Ober & Thomas Carell & Lorena S. Beese, 2004. "Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase," Nature, Nature, vol. 431(7005), pages 217-221, September.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7005:d:10.1038_nature02908
    DOI: 10.1038/nature02908
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02908
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhiman, Saurabh Sudha & David, Aditi & Braband, Vanessa W. & Hussein, Abdulmenan & Salem, David R. & Sani, Rajesh K., 2017. "Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery," Applied Energy, Elsevier, vol. 208(C), pages 1420-1429.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7005:d:10.1038_nature02908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.